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Foreword

Architectural knowledge is becoming increasingly important in the software in-
dustry, both in the embedded and IT sides. To illustrate this, let us explore three
situations that I have personally observed in the last few years.

The first situation was concerned with a software architect working closely with a
sizeable development team to build a first-of-a-kind system. Although the develop-
ment team was experienced, the architect was encountering a problem: almost every
engineer came to talk to the architect because the design of the system was avail-
able, but the rationale behind it and the decisions leading to the design were not. As
a consequence, the engineers repeatedly asked the architect to explain the reason-
ing behind the design of the system as it is quite possible to destroy the conceptual
integrity by implementing architecture different from the architect’s intention. The
reason for the poor architect being harassed by all the engineers was that during the
design process a significant amount of architectural knowledge had vaporized and
was no longer available.

The second situation occurred earlier in the design process of a platform-as-a-
service (PaaS) architecture for a specific domain. The architects were balancing
different quality attributes, using quantitative predictions of the number of cus-
tomers, average usage time, etc. and they were trying to take an informed design
decision concerning data services and analytics. It turned out that in the company as
well as in the industry very little information was available about the consequences
of the design decision that had to be made. As a consequence, the architects were
forced to decide on the architectural alternative based on their beliefs of what would
be the best solution over time for the system at hand. Although one can claim that
this is what architects do, i.e. use their experience to take decisions in complex
and conflicting situations, the fact is that the architects lacked architectural knowl-
edge concerning their design decision that would have improved their confidence
quite significantly. However, despite the research in the domain of design patterns,
we lack effective mechanisms to capture architectural knowledge in ways that al-
low architects to apply domain-specific architectural knowledge to systems in that
domain.

v
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The third situation concerned the evolution of a mature and aging software sys-
tem that had to be adjusted to a set of new requirements affecting functionality and
quality requirements, as well the platform on which the system was running. The
architecture of the system, having evolved in yearly releases for many years, had
eroded quite significantly to the point that the development team tasked with ex-
tending the system had to spend a considerable amount of the project budget to
recreate the necessary part of the architecture in order to be able to refactor and
rearchitect the system in response to the new requirements. Again, the knowledge
about the architecture of the system had vaporized over time and caused significant
inefficiency in the evolution of the system.

The situations that I have described above are quite prototypical of the experi-
ences of virtually every engineer or architect who has spent some time in industrial
software development. However, as a software engineering community we have
grown accustomed to these problems, accepted them as facts of life and research
has mostly focused on dealing with the symptoms.

Soon it will be five years since I changed my position in academia for one in
industry. The reason for my decision to spend time in industry was that I felt I was
getting out of touch with reality; that the perception that I had about how large-
scale software engineering took place was different from the day to day existence
of software development teams, software architects and engineering managers. So,
what have I learned over the last years? The key lessons for me are twofold. First,
software development is a people process first and technological one second. The
customers of software products, services and systems, the engineers building it, the
business leaders and product managers envisioning it, are human beings with all
the psychological and sociological phenomena associated with the processes these
stakeholders use. It is very easy to underestimate the consequences of this when
working in academia or research in general. Second, there still is an enormous gap
between the state of research and the state of practice, despite the heroic efforts of
people on both sides to decrease it. There is a continuous need for people who are
able and willing to cross the boundary back and forth, not only through research
projects in collaboration with industry, but especially through immersion, i.e. work-
ing, in both worlds. These lessons are not necessarily novel or terribly insightful,
but in life some things can only be understood by experiencing them and I believe
in this more than ever.

The research presented in this book is unique and different in the sense that it
is the result of close collaboration between academia and industry. In addition, the
book addresses the root causes of the problems surrounding architectural knowl-
edge. The core of the problem in the situations described above is the vaporization
of architectural knowledge and the lack of a conceptual framework as wells as mech-
anisms, approaches and tools to avoid at least part of the problem. The book that you
are holding right now presents an important and valuable step forward in addressing
these concerns. When preparing to write this preface, I asked the chief architects at
Intuit, the company that I work for, what was their understanding of architectural
knowledge. Their thoughts focused on two key elements of architecting systems,
i.e. the criticality of combining theoretical knowledge with practical experience and
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the importance of translating customer and business requirements into a vision that
teams can rally around and execute. What better way to capture the importance
of architectural knowledge as described here - capturing practical experience and
translating it into generalized architectural knowledge and using this knowledge in
the communication of a vision of the system that is to be built.

Although we have talked about architectural knowledge in general, there is one
area that needs to be addressed explicitly: architectural design decisions. The key
responsibility of software architects, when forced to describe it in one sentence,
is to take architectural design decisions. The activities of the architect include the
work to collect sufficient information leading up to the decision and, after decisions
have been made, to communicate these and explain them to the people affected by
them. However, in the end these activities are in service to the key responsibility for
architects: to take the most appropriate design decisions that optimally balance all
the technical and non-technical as well as short-term versus long-term forces. The
research presented in this book is focused on that understanding and the results are
presented from that perspective.

In conclusion, this book on architectural knowledge presents a very important
and extremely valuable contribution to the field of software engineering and archi-
tecture research and practice. The Griffin project that produced a significant set of
its chapters has more than proved its value and I am honored to congratulate the
authors and editors on their results. I hope that this book and the research projects
that led to it will see equally admirable successors in the future.

Mountain View, CA Jan Bosch
March, 2009
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Preface

A software architecture manifests the major early design decisions. These early
decisions determine the system’s development, deployment and evolution. Thus,
making better architectural decisions is one of the large challenges in software
engineering.

Recently, there has been much discussion about how this challenge can be met
by better managing architectural knowledge. Inspired by the general field of knowl-
edge management and knowledge management approaches in software engineering,
much focus is being given to methods, techniques and approaches for managing
architectural knowledge.

This book presents a concise and accessible description of the subject of knowl-
edge management in the software architecture discipline. We explain the importance
of sound knowledge management practices for improving software architecture pro-
cesses and products, and make clear the role of knowledge management in software
architecture and software development processes.

The major objectives of this book are to:

• Create a concise, timely and approachable reference describing the theoretical
concepts and their practical applications for managing architectural knowledge

• Provide a body of knowledge of software architectural knowledge by describing
relevant and useful results from software architecture research and practice. Such
a body of knowledge should help promote best practices in software architecture
knowledge management

• Show the opportunities for improving the software architecture process by de-
signing, deploying, and institutionalizing various methods of and practices in
managing software architectural knowledge

Why Manage Architectural Knowledge

Many have argued that the availability of architectural knowledge can greatly im-
prove the software development process. If not managed, critical design knowledge

ix
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remains implicitly embedded in the architecture, becoming tacit knowledge which
is eroded as personnel change or leave. Hence, there is a growing demand for a body
of knowledge to help design, develop, and deploy effective knowledge management
structures to facilitate the capture and management of architectural knowledge used
or generated during architecture processes.

What makes this type of knowledge special? Is there any need to focus specif-
ically on this type of knowledge? We believe it is important to use knowledge
management mechanisms that suit the type of knowledge in question. Selecting the
right approach can depend on several factors, from the transferability of the knowl-
edge, the size of the environment that needs this type of knowledge to the character
of the established practices.

Scope of the Book

This book examines architecture knowledge management in a wide sense, describ-
ing many approaches that are in use in software companies today, approaches that
have been used in other domains, and approaches under development in academia.

Who Should Read the Book?

This book is relevant for information technology and software engineering profes-
sionals, in particular software architects and software architecture researchers. For
the industrial audience, the book gives a broad and concise understanding of the
importance of knowledge management for improving software architecture process
and building capabilities in designing and evaluating better architectures for their
mission- and business-critical systems. For researchers, the book will help to under-
stand the applications of various knowledge management approaches in an industrial
setting and to identify research challenges and opportunities. This book will give
university faculty a concise reference to incorporate a specialized but emerging topic
of architecture knowledge management in their courses on software architecture.

Book Organization

The introductory chapter provides an overview of the main concepts software ar-
chitecture and knowledge management. The rest of the book is organized in three
parts:

Part I, “Architecture Knowledge Management”, explains what architecture
knowledge management is, how it relates to software architecture and to knowledge
management, and why it is important in modern software engineering. In particular,



www.manaraa.com

Preface xi

this part provides an overview of what the software architecture community can
learn from the knowledge management community, and the other way round.

Part II, “Tools and Techniques for Managing Architectural knowledge”, shows
what type of support is offered to architecture knowledge management in the prac-
tice by means of software tools and technologies. The tools are presented according
to the typical cases they support. The technologies are discussed for their ability to
support on-line architecture knowledge management communities within and across
organizations.

Part III, “Experience with Architecture Knowledge Management”, focuses on
how theory in architecture knowledge management has been put into practice. Re-
ports from companies cover both technical, managerial, and organizational practices
and lessons learned.
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Chapter 1
Introduction to Software Architecture
and Knowledge Management

Torgeir Dingsøyr and Hans van Vliet

Abstract Designing the global structure of a software intensive system – the soft-
ware architecture – is a knowledge-intensive process. The knowledge produced
and consumed during this process is broad and complex, and needs to be shared
and reused among different stakeholders, and across different life-cycle phases.
Managing architectural knowledge is the topic of this book. This introductory chap-
ter discusses the two fields that form the underlying basis for the topic of this book:
software architecture, and knowledge management.

1.1 Introduction

The descriptions of software architecture and knowledge management given here is
of necessity very short. Readers interested in software architecture may consult for
example [34] or [136]. For knowledge management, consult [293].

A good design is the key to a successful product. Almost 2000 years ago, the
Roman architect Vitruvius recorded what makes a design good: durability (firmitas),
utility (utilitas), and charm (venustas). These quality requirements still hold, for
buildings as well as software systems. A well-designed system is easy to implement,
is understandable and reliable, and allows for smooth evolution. Badly-designed
systems may work at first, but they are hard to maintain, difficult to test, and
unreliable.

During the software design phase, a system is decomposed into a number of inter-
acting components. The top-level decomposition of a system into major components
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together with a characterization of how these components interact, is called its
software architecture.

Software architecture serves three main purposes:

• It is a vehicle for communication among stakeholders. A software architecture is
a global, often graphic, description that can be communicated with the customers,
end users, designers, and so on. By developing scenarios of anticipated use, rel-
evant quality aspects can be analyzed and discussed with various stakeholders.
The software architecture also supports communication during development.

• It captures early design decisions. In a software architecture, the global struc-
ture of the system has been decided upon, through the explicit assignment of
functionality to components of the architecture. These early design decisions are
important since their ramifications are felt in all subsequent phases.

• It is a transferable abstraction of a system, to be read and inspected by people (as
opposed to machines). The architecture is a basis for reuse. Design decisions are
often ordered, from essential to nice features. The essential decisions are captured
in the architecture, while the nice features can be decided upon at a later stage.

So a software architecture embodies knowledge, and the usages of software archi-
tecture constitute a form of knowledge management.

Knowledge management is a large interdisciplinary field, and there is an ongo-
ing debate as to what constitutes knowledge management. We will use Davenport’s
broad definition of knowledge management as:

A method that simplifies the process of sharing, distributing, creating, capturing and
understanding of a company’s knowledge [89].

The motivation for knowledge management is then to make better decisions in
shorter time, saving rework, and improving quality of products, and this can be
manifested through a range of actions, from applying information technology to
re-design of office space.

1.2 Software Architecture

The traditional view holds that the requirements fully determine the structure of a
system. Traditional design methods work that way. Their aim is to systematically
bridge the gap between the requirements and some blueprint of an operational sys-
tem in which all of the requirements are met. It is increasingly being recognized that
other forces influence the architecture (and, for that matter, the design) as well:

• Architecture is influenced by the development organisation. In shop automation
systems, for example, the hardware and software for reading bar codes might be
subcontracted to some organisation having special expertise in that area. There
will then be one or more system components with externally-dictated functiona-
lity and interfaces to deal with this part of the problem.
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• Architecture is influenced by the background and expertise of the architect. If an
architect has positive experience with, say, a layered architecture, he is likely to
use that same approach on his next project.

• Architecture is influenced by its technical and organisational environment. In
financial applications, for instance, government rules may require a certain di-
vision of functionality between system components. In embedded systems, the
functionality of hardware components may influence the functionality of and
interaction between software components. Finally, the software engineering tech-
niques prevalent in the development organisation will exert influence on the
architecture.

This mutual influencing between an architecture and its environment is a cyclical
process, known as the Architecture Business Cycle (ABC) [34]. For example, an
architecture yields certain units of work, corresponding to the components distin-
guished in the architecture. If the same components occur over and over again,
expertise will be organized according to the functionality embedded in these com-
ponents. The development organisation may then become expert in certain areas.
This expertise then becomes an asset which may affect the goals of the development
organisation. The organisation may try to develop and market a series of similar
products in which this expertise is exploited.

Traditional software design is inward-looking: given a set of requirements, how
can we derive a system that meets those requirements. Software architecture has an
outward focus as well: it takes into account how the system fits into its environment.
Software architecting includes negotiating and balancing of functional and quality
requirements on one hand, and possible solutions on the other hand. This is further
elaborated in Sect. 1.2.1.

One of the early definitions of software architecture is [296]:

The architecture of a software system defines that system in terms of computational
components and interactions among those components.

A more recent definition is [34]:

The software architecture of a program or computing system is the structure or structures
of the system, which comprise software elements, the externally visible properties of those
elements, and the relationships among them.

The latter definition reflects, among others, the insight that there may be more
than one structure that is of interest. In house construction, we also use different
drawings: one for the electrical wiring, one for the water supply, etc. These draw-
ings reflect different structures which are all part of the same overall architecture.
We generally observe the architecture through one of these more specific views. The
same holds for the software architecture. This is further elaborated in Sect. 1.2.3.

In the software architecture, the global structure of the system has been decided
upon. This global structure captures the early, major design decisions. Whether a
design decision is major or not really can only be ascertained with hindsight, when
we try to change the system. Only then will it show which decisions were really
important. A priori, it is often not at all clear if and why one design decision is more
important than another [127].
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Viewed this way, the architectural design process is about making the important
design decisions. Next, these important design decisions need to be documented.
Both the process of making architectural decisions and their documentation for later
use are discussed in Sect. 1.2.2.

Today’s work in software architecture is broad in scope. Almost any topic in
software engineering is being rethought in architectural terms. The discussion in this
chapter is focused on how to design, name, and document software architectures,
since this is where the relation to knowledge management is most relevant.

1.2.1 Software Architecture and the Software Life Cycle

If software architecture is just global design, we would be selling old wine in new
bottles. The design phase then is simply split into two subphases: architectural,
global design, and detailed design. The methods used in these two subphases might
be different, but both essentially boil down to a decomposition process, taking a set
of requirements as their starting point. Both design phases then are inward-looking:
starting from a set of requirements, derive a system that meets those requirements.

A ‘proper’ software architecture phase however has an outward focus as well.
It includes negotiating and balancing of functional and quality requirements on
one hand, and possible solutions on the other hand. This means requirements
engineering and software architecture are not subsequent phases that are more or
less strictly separated, but instead they are heavily intertwined. An initial set of
functional and quality requirements is the starting point for developing an initial ar-
chitecture. This initial architecture results in a number of issues that require further
discussion with stakeholders. For instance, the envisaged solution may be too costly,
integration with already existing systems may be complex, maintenance may be an
issue because of a lack of staff with certain expertise, or performance requirements
cannot be met. These insights lead to further discussions with stakeholders, a re-
vised set of requirements, and a revised architecture. This iterative process continues
until an agreement is reached. Only then will detailed design and implementation
proceed.

1.2.2 Architecture Design

Design is a problem-solving activity, and as such very much a matter of trial and
error. In the presentation of a mathematical proof, subsequent steps dovetail well
into each other and everything drops into place at the end. The actual discovery of
the proof went probably quite different. The same holds for the design of software.
We should not confuse the outcome of the design process with the process itself.
The outcome of the design process is a ‘rational reconstruction’ of that process.

During design, the system is decomposed into parts that each have a lower com-
plexity than the system as a whole, while the parts together solve the user’s problem.
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There really is no universal method for this. The design process is a creative one,
and the quality and expertise of the designers is a critical determinant for its success.
Yet, during the course of the years, a number of ideas and guidelines have emerged
which may serve us in designing software. These have resulted in a large number of
design methods.

In a similar vein, architectural design methods have been developed. A good ex-
ample hereof is Attribute Driven Design (ADD), described in [34]. The input to the
ADD process are the requirements, formulated as a set of prioritized quality attribute
scenarios. A quality attribute scenario is a scenario as known from requirements
engineering, but whose description explicitly captures quality information.

ADD is described as a topdown decomposition process. In each iteration, one or
a few components are selected for further decomposition. In the first iteration, there
is only one component, ‘the system’. From the set of quality attribute scenarios, an
important quality attribute is selected that will be handled in the current refinement
step. For instance, we may decide on a first decomposition of the system into three
layers: a presentation layer, a business logic layer, and a data layer. In a next ADD
step, we may decide to decompose the presentation layer, and select usability as
the quality attribute that drives this decomposition. A pattern is then selected that
satisfies the quality attribute. For instance, a data validation pattern [123] may be
applied to verify whether data items have been entered correctly. Finally, the set of
quality attribute scenarios is verified and refined, to prepare for the next iteration.

ADD gives little guidance for the precise order and kind of refinement steps. This
is very much a matter of the architect’s expertise. The same rather global support
is given by other architecture design methods, as discussed by [146]. The global
workflow common to these methods is depicted in Fig. 1.1. At the centre, the back-
log is depicted. The backlog contains a list of issues to be tackled, open problems,
ideas that still have to be investigated, and so on. The name derives from Scrum,
an agile method [292]. There, the backlog drives the project. In (architecture) de-
sign projects, the notion of a backlog is usually not represented explicitly. Yet, it
is always there, if only in the head of the architect. There are three inputs to the

evaluation

synthesis
context

backlog

evaluation
results

requirements

architecture

Fig. 1.1 Global workflow in architecture design
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backlog: context, requirements, and evaluation results. The context refers to such
things as upfront ideas the architect may have, available assets that can be used, con-
straints set, and the like. Obviously, the requirements constitute another important
input. In each step of the architecting process, one or a few items from the back-
log are taken and used to transform the architecture developed so far. The result of
this transformation is evaluated (usually rather informally), and this evaluation may
in turn change the contents of the backlog. New items may be added (for instance
new problems), items may disappear or become obsolete, and the priorities of
backlog items may change.

The architecture design process is very much driven by the architect’s experience,
much more so than by any of the so-called software design methods. An experienced
architect knows how to handle a given issue, rather than that some method tells him
how to perform a design iteration. Design methods that are applied at the more de-
tailed levels of design usually give much more guidance than those for architecture
design methods. But this guidance is used by inexperienced designers mostly. Since
architecture design is usually done by experienced designers, the amount of guid-
ance given, and needed, is less. Attention then shifts to techniques for documenting
the result of the design process: the decisions, their rationale, and the resulting
design.

1.2.2.1 Architecture as a Set of Design Decisions

If architecture is the set of design decisions, then documenting the architecture boils
down to documenting the set of design decisions. This is usually not done, though.
We can usually get at the result of the design decisions, the solutions chosen, but not
at the reasoning behind them. Much of the rationale behind the solutions is usually
lost forever, or resides only in the head of the few people associated with them, if
they are still around.

So the reasoning behind a design decision is not explicitly captured. This is tacit
knowledge, essential for the solution chosen, but not documented. At a later stage, it
then becomes difficult to trace the reasons of certain design decisions. In particular,
during evolution one may stumble upon these design decisions, try to undo them
or work around them, and get into trouble when this turns out to be costly if not
impossible.

There are different types of undocumented design decisions:

• The design decision is implicit: the architect is unaware of the decision, or it
concerns ‘of course’ knowledge. Examples include earlier experience, implicit
company policies to use certain approaches, standards, and the like.

• The design decision is explicit but undocumented: the architect takes a decision
for a very specific reason (e.g. the decision to use a certain user-interface policy
because of time constraints). The reasoning is not documented, and thus is likely
to vaporize over time.
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Table 1.1 Elements of a design decision

Element Description

Issues Design issues being addressed by this decision
Decision The decision taken
Status The status of the decision, e.g. pending, approved
Assumptions The underlying assumptions about the environment in

which the decision is taken
Alternatives Alternatives considered for this decision
Rationale An explanation of why the decision was chosen
Implications Implications of this decision, such as the need for further

decisions or requirements
Notes Any additional information one might want to capture

• The design decision is explicit, and explicitly undocumented: the reasoning is
hidden. There may be tactical company reasons to do so, or the architect may
have personal reasons (e.g. to protect his position).

It is an illusion to want to document all design decisions. There are far too many
of them, and not all of them are that important. And documenting design decisions
takes time and effort from the architect, a very busy person. But we may try to
document the really important ones.

A design decision addresses one or more issues that are relevant for the problem
at hand. There may be more than one way to resolve these issues, so that the decision
is a choice from amongst a number of alternatives. The particular alternative selected
preferably is chosen because it has some favorable characteristics. That is, there is
a rationale for our particular choice. Finally, the particular choice made may have
implications for subsequent decision making. Table 1.1 gives a template for the type
of information that is important to capture for each design decision. This template
is based on [325].

Table 1.2 gives an example of a design decision. It concerns the choice for a
three-tier architecture, consisting of a presentation layer, a business logic layer, and
a data management layer.

Design decisions are often related. A given design decision may constrain further
decisions, exclude or enable them, override them, be in conflict with them, and the
like. And likewise, the notations and tools used to capture this information are very
similar as well. A simple way to structure design decisions hierarchically is in the
form of a decision tree. An example hereof is given in Fig. 1.2. The documentation
of design decisions is further dealt with in Chap. 3.

1.2.3 Architectural Views

A software architecture serves as a vehicle for communication among stakeholders.
Example stakeholders are: end users of the anticipated system, security experts,
representatives from the maintenance department, owners of other systems that
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Table 1.2 Example of a design decision

Element Description

Issues The system has to be structured such that it is maintain-
able, reusable, and robust

Decision A three-tier architecture, consisting of a presentation
layer, a business logic layer, and a data management
layer

Status Approved
Assumptions The system has no hard real-time requirements
Alternatives Alternatives are a service-oriented architecture (SOA), or

a different type of X-tier architecture (e.g. one with
a fat client including both presentation and business
logic, and a data management tier)

Rationale Maintenance is supported and extensions are easy to re-
alize because of the loose coupling between layers.
Both the presentation layer and the data management
layer can be reused as is in other applications. Ro-
bustness is supported because the different layers can
easily be split over different media, and well-defined
layer interfaces allow for smoother testing

Implications Performance is hampered since all layers have to be gone
through for most user actions

Notes None

MVC

observer

X-tier

SOA

3-tier

system structure

Fig. 1.2 Tree of design decisions

this system has to interface with, software developers, and of course the architect
himself. These stakeholders all have a stake, but the stakes may differ. End users
will be interested to see that the system will provide them with the functional-
ity asked for. Software developers will be interested to know where to implement
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this functionality. Maintainers want to assure themselves that components are as
independent as possible.

In some cases, it may be possible to devise one single architecture represen-
tation that serves all these stakeholders. In general, this will not work, though. A
specific stakeholder is best served by a representation of the software architecture
that highlights his concerns. Another stakeholder is likely to be better served by an-
other representation. Just think of civil engineering, where one representation may
highlight the outer appearance, while another highlights construction aspects.

IEEE standard 1471 [155] gives a general structure for software architecture
representations. The main elements from this standard are:

• Stakeholder. An individual, team, or organisation (or classes hereof) with inter-
ests in, or concerns relative to, a system.

• View. A representation of a whole system from the perspective of a related set of
concerns.

• Viewpoint. A viewpoint establishes the purposes and audience for a view and the
techniques or methods employed in constructing a view.

So the stakeholder concerns determine which representations, called views, are
appropriate for a specific software architecture. Each view has a corresponding
viewpoint which gives the ‘syntax’ of the view, much like a construction drawing
has an accompanying description telling what all the glyphs in the drawing mean.

IEEE 1471 does not tell you which viewpoints to use. In essence, it suggests
we develop an appropriate set of viewpoints for each separate software architec-
ture. It does have the notion of a library viewpoint, though, a viewpoint that might
be useful across different software architectures. Bass et al.[34] give a collection
of viewpoints that is useful across a wide variety of software architectures. These
viewpoints fall into three classes:

• Module viewpoints give a static view of the system. They are usually depicted in
the form of box and line diagrams where the boxes denote system components
and the lines denote some relation between those components.

• Component and connector viewpoints give a dynamic view of the system, i.e. they
describe the system in execution. Again, they are usually depicted as box and line
diagrams.

• Allocation viewpoints give a relation the system and its environment, such as who
is responsible for which part of the system.

Of course, one is not going to use all these viewpoints for a single software
architecture. Usually, one from each category will suffice. One may for instance
choose the decomposition, deployment, and work assignment viewpoints. It is also
possible to combine viewpoints. In specific cases, additional architectural views may
be helpful or needed. In systems for which the user interface is of critical impor-
tance, a separate user-interface view may be developed. In electronic commerce
applications, a view highlighting security aspects may come in handy. And so on.

Many organisations have developed their own set of library viewpoints. A well-
known set of library viewpoints is known as the ‘4 + 1 model’ [188]. Viewpoints,
and the capturing of design decisions in viewpoints, is further discussed in Chap. 3.
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1.2.4 Architectural Knowledge

In the architecting process, a lot of knowledge is being used and produced. An im-
portant part of this architectural knowledge concerns the solution chosen, in terms
of components and connectors, and as documented in views. From the previous
discussion, it is clear that the decisions that lead to this solution, are an impor-
tant ingredient of architectural knowledge as well. We thus arrive at the following
definition: Architectural Knowledge = Architectural Design + Architectural Design
Decisions [192]. This definition is used in most chapters of this book. From the lit-
erature survey on this topic discussed in Chap. 2, it is clear that other definitions
of this notion exist. Chapter 5 takes an even broader perspective in that knowledge
about the architectural process is included in the definition as well. The documen-
tation of architectural knowledge (both the solution, in views, and the decisions) is
discussed more extensively in Chap. 3.

1.3 Knowledge Management

To develop software requires deep technical knowledge in many specific domains, as
well as other forms of knowledge related to human processes and to understanding
how software applications will be used. Software development is therefore what
we can call knowledge-intensive work, and we believe that knowledge-intensive
work can be improved by learning how to managing knowledge better, which is the
cornerstone argument for knowledge management in general.

To discuss knowledge management and learning, we begin with a brief dis-
cussion of the term knowledge and knowledge management, then proceed with
an overview of theories related to knowledge and learning, and finally describe
approaches to knowledge management within software engineering.

1.3.1 Knowledge and Knowledge Management

The Oxford Dictionary and Thesaurus [243] defines knowledge as: “awareness or
familiarity gained by experience (of a person, fact, or thing)”, “persons range of
information”, “specific information; facts or intelligence about something”, or “a
theoretical or practical understanding of a subject”. In the philosophic literature,
knowledge has been viewed as “justified true belief”. Nonaka and Takeuchi [234]
and many others refer to two main types of knowledge, tacit and explicit knowledge
[255]. Definitions of these terms vary but many define tacit knowledge as knowl-
edge that a human is not able to express explicitly, but is guiding the behaviour of
the human. For example how to ride a bike is something that is difficult to express,
which you have to learn by trial and error. Explicit knowledge is knowledge that
we can represent, for example in reports, books, talks, or other formal or informal
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communication. So when we later discuss information systems for knowledge man-
agement, it is only the explicit knowledge that can be managed in these kinds of
systems; the tacit knowledge remains in the people.

Knowledge management has gained much attention in many research fields, and
has many origins. One origin is the book “The Corporate Memory” [334], which was
published in 1974, and argued on the benefit of collecting information from differ-
ent sources in a company and making it “searchable”. At this time, the information
was gathered on paper, and “search” would mean to submit a form to a department
who would manually search through their files. The term corporate memory is still
in use, but now meaning a computerised database for storing documents from many
people in a company. The term “corporate brain” is also used to describe such a
database. Another related term is “organisational memory”, which does not really
have a clear definition, but “intuitively, organisations should be able to retrieve traces
of their past activities, but the form of this memory is unclear in research literature.
Early efforts assume one could consider memory as though it were a single, mono-
lithic repository of some sort for the entire organisation” [1]. Many see this term as
meaning both a process of collecting and using information as well as a repository.

We have used Davenport’s definition of knowledge management earlier in this
chapter, which describes knowledge management as simplifying processes of shar-
ing, distributing, creating, capturing and understanding the knowledge of a company
[89]. In the introductory chapter for the handbook on knowledge management and
organisational learning [108], Easterby-Smith and Lyles discuss the term knowledge
management and related terms organisational learning, the learning organisation,
and organisational knowledge. In the following, we will use knowledge manage-
ment in a broad sense, which also incorporates the other related terms defined by
Easterby-Smith and Lyles.

Knowledge management has received much attention in various fields, which is
demonstrated by the publication of two “handbooks” [95, 108], one encyclopaedia
[293], and numerous books.

One of the most cited books on knowledge management is “The Knowledge-
Creating Company” by Nonaka and Takeuchi [234] seeks to explain the success
of Japanese companies by their skills in “organisational knowledge creation”, with
more emphasis on tacit knowledge than in the west. They present a model of how
knowledge is transformed and converted in an organisations, often referred to as the
SECI-model after the four conversion mechanisms. We will present this model in
further detail in Sect.1.3.2.

Another main influence on thinking on knowledge management has been the
work on selecting a strategy on knowledge management Hansen et al. [143]. They
refer to two main strategies for knowledge management:

• Codification. To systematise and store information that constitutes the knowledge
of the company, and to make this available to the people in the company for reuse.

• Personalisation. To support the flow of information in a company by having a
centralised store of information about knowledge sources, like a “yellow pages”
of who knows what in a company.
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Table 1.3 Earl’s schools of knowledge management

School Subschool Focus Aim Unit

Technocratic Systems Technology Knowledge bases Domain
Cartographic Maps Knowledge directories Enterprise
Engineering Processes Knowledge flows Activity

Economic Commercial Income Knowledge assets Know-how
Behavioural Organisational Networks Knowledge pooling Communities

Spatial Space Knowledge exchange Place
Strategic Mindset Knowledge capabilities Business

Several have suggested a hybrid strategy, which provides a balance between the
codified and personalized strategies [7, 92, 328]. For knowledge that is not subject
to frequent changes, a codification strategy is useful, as it can be reused without too
much effort to update it. On the other hand, much architectural knowledge is not
stable. For such knowledge, a personalization strategy may be appropriate, enabling
stakeholders to find “who knows what”.

Earl [107] has further classified work in knowledge management into schools
(see Table 1.3). The schools are broadly categorized as “technocratic”, “economic”
and “behavioural”. The technocratic schools are (1) the systems school, which
focuses on technology for knowledge sharing, using knowledge repositories; (2)
the cartographic school, which focuses on knowledge maps and creating knowl-
edge directories; and (3) the engineering school, which focuses on processes and
knowledge flows in organisations. The economic school focuses on how knowledge
assets relates to income in organisations. The behavioural school consists of three
subschools (1) the organisational school, which focuses on networks for sharing
knowledge; (2) the spatial school, which focuses on how office space can be de-
signed to promote knowledge sharing; and (3) the strategic school, which focuses
on how knowledge can be seen as the essence of a company’s strategy.

Many have been critical to the concept of knowledge management, and in partic-
ular to the use of information technology in knowledge management. Hislop [145]
questions the distinction between tacit and explicit knowledge. If explicit knowl-
edge cannot be managed independently, this means that information technology
will have a smaller part in knowledge management. This critique is also supported
by McDermot [223], who argues that “if people working in a group don’t already
share knowledge, don’t already have plenty of contact, don’t already understand
what insights and information will be useful to each other, information technology
is not likely to create it”. In addition, Swan et al. [309] criticize the knowledge man-
agement field for being too occupied with tools and techniques. They claim that
researchers tend to overstate the codifiability of knowledge and to overemphasize
the utility of IT to give organisational performance improvement. They also warn
that “codification of tacit knowledge into formal systems may generate its own
pathology: the informal and locally situated practices that allow the firm to cope
with uncertainty may become rigidified by the system”. The occupation with tools
is further discussed in the works of Huysman and de Wit [150], who characterize
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knowledge management focusing on knowledge acquisition, exchange and creation
as “first generation” knowledge management, and argue that the “second genera-
tion” must take more into respect the power of the people who hold the knowledge.
Thus, the focus needs to move more to motivating people to share their knowledge.
Huysman and Wulf [151], further argue that knowledge management tools needs to
be embedded in the social networks of which they are part of in order to be used.

Schultze and Leidner [290] studied discourses of knowledge management in in-
formation systems research, and warn that knowledge can be a double-edged sword:
too little can result in expensive mistakes, while too much can lead to unwanted ac-
countability. In a study of research on information systems, they found that most
existing research is optimistic on the role of knowledge management in organisa-
tions, and they urge researchers to give more attention to the critique of knowledge
management.

1.3.2 Knowledge and Learning

In cognitive and organisation science, we find many models on how knowledge
is transferred or learned at an individual and organisational level. We present four
theories that are referred to widely: the double-loop learning theory of Argyris and
Schön, Wenger’s theory of communities of practice, and Nonaka and Takeuchi’s
theory of knowledge creation and Senge’s model of the learning organisation.

Argyris and Schön distinguish between what they call single and double-loop
learning [19] in organisations. In single-loop learning, one receives feedback in the
form of observed effects and then acts on the basis solely of these observations to
change and improve the process or causal chain of events that generated them. In
double-loop learning, one not only observes the effects of a process or causal chain
of events, but also understands the factors that influence the effects.

One traditional view of learning is that it is most effective when it takes place in
a setting where you isolate and abstract knowledge and then “teach” it to “students”
in rooms free of context. Wenger describes this as a view of learning as an individual
process where, for example, collaboration is considered a kind of cheating [335]. In
his book about communities of practice, he describes a completely different view:
learning as a social phenomenon. A community of practice develops its own “prac-
tices, routines, rituals, artifacts, symbols, conventions, stories and histories”. This
is often different from what you find in work instructions, manuals and the like.
Wenger defines learning in communities of practice as follows:

• For individuals. Learning takes place in the course of engaging in, and contribut-
ing to, a community.

• For communities. Learning is to refine the practice.
• For organisations. Learning is to sustain interconnected communities of practice.

Nonaka and Takeuchi [234] claim that knowledge is constantly converted from
tacit to explicit and back again as it passes through an organisation. They say that
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knowledge can be converted from tacit to tacit, from tacit to explicit, or from explicit
to either tacit or explicit knowledge through the following mechanisms:

• Socialisation means to transfer tacit knowledge to another person through obser-
vation, imitation and practice, what has been referred to as “on the job” training.
Craftsmanship has usually been learned in this way, where oral communication
is either not used or plays a minor part.

• Externalisation means to go from tacit knowledge to explicit. Explicit knowledge
can “take the shapes of metaphors, analogies, concepts, hypotheses or models”
[234].

• Combination is to go from explicit to explicit knowledge, that is, to combine
and systematize knowledge from different sources such as documents, meetings,
telephone conferences or bulletin boards. Systematizing this kind of explicit
knowledge is to reconfigure it by sorting, adding, combining or categorizing the
knowledge.

• Combination means to go from explicit to explicit knowledge, by taking knowl-
edge from different sources such as documents, meetings, telephone conferences,
or bulletin boards and aggregating and systematizing it.

• Internalisation means to take externalised knowledge and make it into indi-
vidual tacit knowledge in the form of mental models or technical know-how.
“Documents and manuals facilitate the transfer of explicit knowledge to other
people, thereby helping them experience the experiences of others indirectly (i.e.
‘re-experience’ them)” [234].

According to Nonaka and Takeuchi, knowledge passes through different modes of
conversion, which makes the knowledge more refined and spreads it across different
layers in an organisation.

In the much-cited book on learning organisations, The Fifth Discipline [294],
we find further characteristics of learning organisations: the ability of “systems
thinking” – to see more than just parts of a system. This often means to involve
people in an organisation to develop a “shared vision”, some common grounds that
make the work meaningful, and also serve to explain aspects that you yourself do
not have hands-on experience in. Another way of improving communication in an
organisation is to work on “mental models” that support action, “personal mastery”;
that people make use of their creativity and abilities. And finally “group learning” –
to enhance dialogue and openness in the organisation.

1.3.3 Knowledge Management in Software Engineering

Companies developing information systems have failed to learn effective means for
problem solving to such an extent that they have learned to fail, according to an
article by Lyytinen and Robey [218]. One suggested mean to overcome this problem
is an increased focus on knowledge management.

In software engineering, there has been much discussion about how to manage
knowledge, or foster “learning software organisations” [22, 272]. In this context,
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Feldmann and Althoff have defined a “learning software organisation” as an organ-
isation that has to “create a culture that promotes continuous learning and fosters
the exchange of experience” [118]. Dybå places more emphasis on action in his
definition: “A software organisation that promotes improved actions through better
knowledge and understanding” [105].

In software engineering, reusing life cycle experience, processes and products for
software development is often referred to as having an “Experience Factory” [33].
In this framework, experience is collected from software development projects, and
is packaged and stored in an experience base. By packing, we mean generalising,
tailoring, and formalising experience so that it is easy to reuse.

A number of overviews of work on knowledge management in software engi-
neering can be found in the literature. Bjørnson and Dingsøyr [41] give an overview
of published empirical studies on knowledge management in software engineer-
ing in a systematic review. They categorized 29 empirical studies and 39 lessons
learned reports according to the knowledge management schools of Earl, and found
that most attention was given to the technocratic and behavioural schools. Rus
et al. [272] present an overview of knowledge management in software engineer-
ing. The review focuses on motivations for knowledge management, approaches to
knowledge management, and factors that are important when implementing knowl-
edge management strategies in software companies. Lindvall et al. [211] describe
types of software tools that are relevant for knowledge management, including tools
for managing documents and content, tools for managing competence, and tools
for collaboration. Dingsøyr and Conradi [96] surveyed the literature for studies
of knowledge management initiatives in software engineering. They found eight
reports on lessons learned, which are formulated with respect to what actions com-
panies took, what the effects of the actions were, what benefits are reported, and
what kinds of strategy for managing knowledge were used. Babar et al. [7] present
studies on managing software architecture, and found that most published reports
from research and practice focus on codification, while many companies the authors
have worked with focus on a personalization strategy unintentionally. An overview
of works on architecture knowledge management can be found in Chap. 2.

1.4 Summary

Software architecture is concerned with the description of elements from which
systems are built, the interaction among those elements, patterns that guide their
composition, and constraints on those patterns. The design of a software architecture
is driven by quality concerns. The resulting software architecture is described in
different views, each of which addresses specific concerns on behalf of specific
stakeholders. This resembles the way different drawings of a building emphasize
different aspects on behalf of its different stakeholders.

It is important to not only document the resulting solution, but also the decisions
that led to that solution, its rationale, and other information that is helpful to guide
its further evolution.
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Software architecture is an important notion, for more than one reason:

• The comparison with traditional architecture reveals commonalities which help
us to get a better grip on the software design process and its products. Software
architecture is not only concerned with the blueprint that is the outcome of the
design process. The notion of an architectural style has merits of its own and
the relationship between style on the one hand and engineering and materials on
the other hand provide additional insights into what software design entails [250].

• Phrasing a software design in software architectural terms promotes consistency
during development and maintenance. Phrasing the global design in terms of an
architecture forces us to think about its general flavor, in terms of types of compo-
nent and connector, as well as a certain control structure. By making this intuition
explicit, it both describes and prescribes how the system should look and how it
may evolve over time.

• A software architecture captures early design decisions. The architecture can be
used to evaluate those decisions. It also provides a way to discuss those decisions
and their ramifications with the various stakeholders.

As software architecture constitutes the main decisions, this kind of knowledge
is especially important when focusing on knowledge management in software
companies. We have defined knowledge management broadly as a method that sim-
plifies the process of sharing, distributing, creating, capturing and understanding
a company’s knowledge. The motivation for managing knowledge in the software
engineering field, is that software development is knowledge-intensive work, and
methods, techniques and tools for improving the way knowledge is managed is
likely to improve the software products and the software development process. In
this chapter we have observed that:

• There are many approaches to knowledge management, from focusing on codify-
ing knowledge in different forms, like describing work processes and describing
knowledge artifacts, such as the rationale for design decisions, to focusing on
leveraging the knowledge of communities and designing office space in order to
create arenas for knowledge sharing.

• Learning can be described in many ways. Double-loop learning describes learning
that has a large potential for impact on products and processes. Others have given
attention to learning as a social phenomenon, emphasizing that knowledge has to
be put in a context to be useful. Learning can also be seen as a conversion process
of knowledge from tacit to explicit through mechanisms such as socialization,
externalization, combination and internalization. Finally, we have described the
idea of the learning organisation as organisations that enable “systems thinking”.

• Knowledge management has been given some attention for software engineering
in general, mainly with a focus on codifying knowledge in different forms. Much
of the previous work has been concerned with tools for knowledge management,
such as tools for managing documents and content, tools for managing compe-
tence and collaboration tools.
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Knowledge management is a broad field, and this also applies for managing archi-
tectural knowledge. This part seeks to show the breadth of the field, and to provide
a summary of central ideas that are used in subsequent chapters. Key questions
discussed include: What is architectural knowledge? How can we represent archi-
tectural knowledge? What we can learn from other fields that focus on knowledge
management? And how can the process of architectural design allow for effective
knowledge management?

In answering these questions, the objectives of Part I are to explain what archi-
tecture knowledge management is, how that relates to software architecture and to
knowledge management, and why it is that important in modern software engineer-
ing. This part provides an overview about what the software architecture community
can learn from the knowledge management community, and the other way around.

Chapter 2 starts out by investigating definitions of architectural knowledge, and
distinguishes between four views: The pattern-centric, the dynamism-centric, the
requirements-centric and the decision-centric view. Rik Farenhorst and Remco C.
de Boer studied published papers on architecture knowledge management, and
found indications of a shift towards more overarching knowledge management
approaches, combining the views.

How architectural knowledge is represented is characterised in Chap. 3. Repre-
sentation has evolved from the intuitive and informal to the structured, abstract and
formal. Focus has also moved from documenting architectural design to document-
ing architectural design decisions. Architectural knowledge should be made explicit,
Philippe Kruchten argues, to ease the reasoning around architecture.

What approaches exist to knowledge management in general, and what we
can learn from studies in software engineering, is the topic of Chap. 4. Relevant
knowledge management schools are presented, with examples of how they are ap-
plied in software engineering. Some approaches are characterized as “technocratic”,
giving emphasis to information technology, while the “behavioural” schools em-
phasize more on the human aspects of knowledge management. The chapter ends
with Torgeir Dingsøyr discussing the pros and cons of the schools with respect to
managing architectural knowledge.

The software architecture process, and specifically how this process can be
supported with knowledge management is discussed by Muhammad Ali Babar in
Chap. 5. To develop a software architecture is a complex and highly knowledge-
intensive activity, with many decisions to be taken and tradeoffs to be made.
The activities, the roles, and the knowledge needs involved when designing the
architecture are distilled into a model of architecture knowledge management.

These chapters define many of the concepts, which are subsequently used in
Parts II and III of this book.
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Chapter 2
Knowledge Management in Software
Architecture: State of the Art

Rik Farenhorst and Remco C. de Boer

Abstract Architectural knowledge has played a role in discussions on design, reuse,
and evolution for over a decade. Over the past few years, the term has significantly
increased in popularity and attempts are being made to properly define what con-
stitutes ‘architectural knowledge’. In this chapter, we discuss the state-of-the-art
in architectural knowledge management. We describe four main views on archi-
tectural knowledge based on the results of a systematic literature review. Based
on software architecture and knowledge management theory we define four main
categories of architectural knowledge, and discuss four distinct philosophies on
managing architectural knowledge, which have their origin in the aforementioned
views. Whereas traditionally tools, methods, and methodologies for architecture
knowledge management were confined to a single philosophy, a trend can be ob-
served that state-of-the-art approaches take a more holistic stance and integrate
different philosophies in a single architecture knowledge management approach.

2.1 Introduction

Over the past few years, the concept of ‘architectural knowledge’ has become more
prominent in literature and attempts are being made to arrive at a proper defini-
tion for this concept. In this chapter we present the state-of-the-art in architecture
knowledge management. To this end, we look at what precisely entails architectural
knowledge and what predominant philosophies exist for managing such knowledge.

In answer to the question ‘what is architectural knowledge?’, in Sect. 2.2 we de-
scribe four main views on architectural knowledge that emerged from a systematic
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literature review, and explore their commonalities and differences. Using two or-
thogonal architectural knowledge dimensions, we define four categories of archi-
tectural knowledge. The potential knowledge conversions between these categories,
which we describe in Sect. 2.3, together form a descriptive framework with which
different architecture knowledge management philosophies can be typified. This
framework shows that the differences between the four views on architectural
knowledge are very much related to the different philosophies they are based on.

Although there exist several single-philosophy approaches that have both their
origin and scope on only one of the main philosophies, in recent years a shift towards
more overarching approaches can be observed. Four of such trends for architecture
knowledge management are discussed in Sect. 2.4.

2.2 What Is ‘Architectural Knowledge’?

To be able to understand what architectural knowledge entails, we have conducted
a systematic literature review in which we explored the ‘roots’ architectural knowl-
edge has in different software architecture communities. Details on the protocol
followed in this systematic literature review can be found in Sect. 2.5. The review
revealed four primary views on architectural knowledge. In Sect. 2.2.1 we elabo-
rate upon these views, and in Sect. 2.2.2 we formulate a theory on architectural
knowledge by looking at the commonalities and differences between these views.

2.2.1 Different Views on Architectural Knowledge

Architectural knowledge is related to such various topics as architecture evolu-
tion, service oriented architectures, product line engineering, enterprise architec-
ture, and program understanding, to name but a few. In the literature, however,
there are four main views on the use and importance of architectural knowledge.
Those four views – pattern-centric, dynamism-centric, requirements-centric, and
decision-centric – are introduced in this section.

2.2.1.1 Pattern-Centric View

In the mid-nineties, patterns became popular as a way to capture and reuse design
knowledge. People were disappointed by the lack of ability of (object-oriented)
frameworks to capture the knowledge necessary to know when and how to apply
those frameworks. Inspired by the work of Christopher Alexander on cataloging
patterns used in civil architecture, software engineers started to document proven
solutions to recurring problems.
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Initially, patterns focused mainly on object oriented design and reuse; the canon-
ical work in this area is the book by the ‘Gang of Four’ [130]. The aim was to let
those design patterns capture expert and design knowledge, necessary to know when
and how to reuse design and code. Soon, however, the patterns community extended
its horizon beyond object-oriented design. Nowadays, patterns exist in many areas,
including patterns for analysis (e.g., [125]), architectural design (e.g., [128, 64]),
and the development process (e.g., [82, 81]).

Patterns in software development serve two purposes. Patterns are reusable so-
lutions that can be applied to recurring problems. They also form a vocabulary that
provides a common frame of reference, which eases sharing architectural knowl-
edge between developers. Although patterns are usually documented according to
certain templates, there is not a standard template used for all patterns. The way in
which patterns are codified make them very suitable for human consumption, but
less so for automated tools.

2.2.1.2 Dynamism-Centric View

A more formal approach to architectural knowledge can be found in discussions on
dynamic software architectures. Systems that exhibit such dynamism can dynam-
ically adapt their architecture during runtime, and for example perform upgrades
without the need for manual intervention or shutting down. Such systems must be
able to self-reflect and ‘reason over the space of architectural knowledge’ [132],
which invariably means that – unlike patterns – this architectural knowledge must
be codified for consumption by non-human agents.

As the software itself must understand the architectural knowledge, architecture-
based adaptation has to rely on rather formal ways of codification. A 2004 survey
by Bradbury et al. [50] reveals that almost all formal specification approaches for
dynamic software architectures are based on graph representations of the architec-
tural structure. Purely graph-based approaches use explicit graph representations
of components and connectors. In those approaches, architectural reconfiguration
is expressed with graph rewriting rules. Other approaches, which use implicit
graph representations, rely mainly on process algebra or logic to express dynamic
reconfiguration of the architecture.

A particular family of formal languages for representing architectures is formed
by so-called ‘architecture description languages’ (ADLs). Although not all ADLs
are suitable for use in run-time dynamic systems, all ADLs are based on the same
component-connector graph-like representation of architectures (cf. [224]).

2.2.1.3 Requirements-Centric View

The architecture is, ultimately, rooted in requirements. Therefore, architectural
knowledge plays a role in enabling traceability in the transition from requirements to
architecture. But there is an inverse relation too, namely the fact that ‘stakeholders
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are quite often not able to specify innovative requirements in the required detail
without having some knowledge about the intended solution’ [254]. Hence, in or-
der to specify sufficiently detailed requirements, one needs knowledge about about
the (possible) solutions, which means that requirements and architecture need to
be co-developed. This is a subtle, but important difference: the transition-view is
a bit older and denotes the believe that problem is followed by solution, whereas
the more recent co-development view emphasizes that both need to be considered
concurrently.

The relation between requirements and architecture has been a popular subject
of discourse since the early 2000s. Although the related STRAW workshop series
is no longer organized, many researchers still focus on bridging the gap between
requirements and architecture. A 2006 survey by Galster et al. [129] identified and
classified the methodologies in this area, including Jackson’s problem frames (later
extended to ‘architectural frames’ [262]), goal-oriented requirements engineering,
and the twin peaks model for weaving architecture and requirements [235].

2.2.1.4 Decision-Centric View

For many years, software architecture has mainly been regarded as the high-level
structure of components and connectors. Many architectural description frame-
works, such as the IEEE-1471 standard [155] therefore have a particular focus on
documenting the end result of the architecting process.

Nowadays, the view on architecture seems to be shifting from the end result
to the rationale behind that end result. More and more researchers agree that one
should consider not only the resulting architecture itself, but also the design deci-
sions and related knowledge that represent the reasoning behind this result. All such
architectural knowledge needs to be managed to guide system evolution and prevent
knowledge vaporization [48].

The treatment of design decisions as first-class entities enables the consideration
of a wide range of concerns and issues, including pure technical issues, but also
business, political and social ones. Architects need to balance all these concerns in
their decision making. To justify the architectural design to other stakeholders, com-
munication of the architectural design decisions plays a key role. In that sense, the
decision-centric view is very much related to the (broader) field of design rationale.

2.2.2 So, What Is Architectural Knowledge?

If there’s anything clear from the four views on architectural knowledge, it must be
that there is not a single encompassing definition of what this knowledge entails.
A 2008 survey of definitions of architectural knowledge revealed that most studies
circumstantially define architectural knowledge. Those studies that do give a di-
rect definition are of recent date, and all of them have roots in the decision-centric
view [43].
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The apparent importance of the decision-centric view in discussing and defin-
ing architectural knowledge may be explained when we look at the links between
this view and the other views; decisions appear to be the linking pin between the
different views.

The relation between patterns and decisions is discussed by Harrison et al. Their
conclusion is that the two are complementary concepts, and that ‘[u]sing a pattern in
system design is, in fact, selecting one of the alternative solutions and thus making
the decisions associated with the pattern in the target systems specific context’ [144].
Ran and Kuusela proposed a hierarchical ordering of design patterns in what they
call a ‘design decision tree’ [261].

The relation between design decisions and requirements can be approached from
two directions. Bosch conceptually divides an architectural design decision into a
‘solution part’ and a ‘requirements part’ [48]. The requirements part represents the
subset of the system’s requirements to which the solution part provides a solution.
Van Lamsweerde, on the other hand, argues that for alternative goal refinements and
assignments, ‘decisions have to be made which in the end will produce different
architectures’ [199].

Formal graph-based architecture representations are especially suitable for au-
tomated reasoning. In other words, those representations enable automated agents
either take design decisions themselves [50], or to inform human architects about
potential problems and pending decisions [267].

Decisions may indeed be an umbrella concept that unify parts of those different
views on architectural knowledge, because they closely relate to various manifesta-
tions of architectural knowledge concepts. Of course, there are differences between
the views too: patterns are individual solution fragments, formal representations fo-
cus on the end result only, and requirements engineering is more occupied with
problem analysis than solution exploration. If we want to better compare the dif-
ferent manifestations of architectural knowledge, it helps to distinguish between
different types of architectural knowledge. Two distinctions are particularly use-
ful: tacit vs. explicit knowledge, and application-generic vs. application-specific
architectural knowledge.

Nonaka and Takeuchi draw the distinction between tacit and explicit knowl-
edge [234] (see also Chap. 1). This distinction is applicable to knowledge in general,
and its application to architectural knowledge allows us to distinguish between the
(tacit) knowledge that an architect and other stakeholders built up from experi-
ence and expertise, and the (explicit) architectural knowledge that is produced and
codified – for example in artifacts such as architecture descriptions.

The distinction between application-generic and application-specific architec-
tural knowledge has been proposed by Lago and Avgeriou [195]. This distinction,
which is not necessarily applicable to other knowledge than ‘architectural’ knowl-
edge, allows us to distinguish between (application-generic) knowledge that is
“a form of library knowledge” that “can be applied in several applications inde-
pendently of the domain” and (application-specific) knowledge that involves “all
the decisions that were taken during the architecting process of a particular sys-
tem and the architectural solutions that implemented the decisions”. In summary,
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Fig. 2.1 Architectural knowledge categories

application-generic knowledge is all knowledge that is independent of the applica-
tion domain, application-specific knowledge is all knowledge related to a particular
system.

Since the two distinctions are orthogonal, a combination of the two results in
four main categories of architectural knowledge, which are depicted in Fig. 2.1. That
figure also provides examples of the type of architectural knowledge that fits each
of the four categories.

• Application-generic tacit architectural knowledge includes the design knowledge
an architect gained from experience, such as architectural concepts, methodolo-
gies, and internalized solutions.

• Application-specific tacit architectural knowledge concerns contextual domain
knowledge regarding forces on the eventual architectural solution; it includes
business goals, stakeholder concerns, and the application context in general.

• Application-generic explicit knowledge is design knowledge that has been made
explicit in discussions, books, standards, and other types of communication. It in-
cludes reusable solutions such as patterns, styles and tactics, but also architecture
description languages, reference architectures, and process models.
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• Application-specific explicit architectural knowledge is probably the most tan-
gible type of architectural knowledge. It includes all externalized knowledge
of a particular system, such as architectural views and models, architecturally
significant requirements, and codified design decisions and their rationale.

2.3 Philosophies of Architecture Knowledge Management

Knowledge from each of the four architectural knowledge categories can be con-
verted to knowledge in another (or even in the same) category. This conversion
lies at the basis of different architecture knowledge management philosophies.
For some, architecture knowledge management may be mainly intended to sup-
port the transition from application-generic to application-specific knowledge. For
others, the interplay between tacit and explicit knowledge may be the essence of
architecture knowledge management.

Nonaka and Takeuchi defined four modes of conversion between tacit and ex-
plicit knowledge: socialization (tacit to tacit), externalisation (tacit to explicit), inter-
nalisation (explicit to tacit), and combination (explicit to explicit; cf. Chap. 1). Based
on the distinction between application-generic and application-specific knowledge,
we can define four additional modes of conversion:

• Utilization is the conversion from application-generic to application-specific
knowledge. It is a common operation in the architecting process where back-
ground knowledge and experience are applied to the problem at hand.

• Abstraction is the conversion from application-specific to application-generic
knowledge. In this conversion, architectural knowledge is brought to a higher
level of abstraction so that it has value beyond the original application domain.

• Refinement is the conversion from application-specific to application-specific
knowledge. Here, the architectural knowledge for a particular application is
analyzed and further refined and related.

• Maturement is the conversion from application-generic to application-generic
knowledge. It signifies the development of the individual architect as well as the
architecture field as a whole; a kind of learning where new generic knowledge is
derived and becomes available for application in subsequent design problems.

In total, there are 16 architectural knowledge conversions. Each conversion is
formed by pairing one of the four conversions between tacit and explicit knowledge
with one of the four conversions between application-generic and application-
specific knowledge. Together, the 16 conversions form a descriptive framework with
which different architecture knowledge management philosophies can be typified.

We saw earlier that the four views on architectural knowledge can all be related
to decision making. At the same time, we saw that there are also obvious differ-
ences between those views. Those differences are very much related to the different
architecture knowledge management philosophies they are based on.
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Fig. 2.2 AK management philosophies

The pattern-centric view, for example, is mainly geared towards the development
of a shared vocabulary of reusable, abstract solutions. As such, the development
of a shared tacit mental model is a major goal. This goal is achieved by sharing
application-generic patterns that are mined from application-specific solutions. A
second goal is the development of libraries of reusable solutions, which is made
possible by maturement of documented patterns by cataloging them. The knowl-
edge management philosophy in this view is primarily based on the following
architectural knowledge conversions, which are also visualized in Fig. 2.2:

(a) Abstraction and combination. The most obvious example of this conversion
is the process of pattern mining. Patterns are inherently abstractions. They
are mined from existing architectural solutions and described in a clear and
structured way to improve the reusability.
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(b) Utilization and combination. One of the ways in which patterns can be reused
in new designs is by looking them up in books, catalogs, or other repositories.
Architects who wish to design a system comprised of several independent pro-
grams that work cooperatively on a common data structure could look up one of
the many books available on architectural patterns (e.g., [64]) to find out that the
‘blackboard’ pattern is just what they need. Grady Booch works on the creation
of a Handbook of software architecture, of which the primary goal is “to fill this
void in software engineering by codifying the architecture of a large collection
of interesting software-intensive systems, presenting them in a manner that ex-
poses their essential patterns and that permits comparisons across domains and
architectural styles” [47].

(c) Maturement and combination. Documented patterns may be organized in pat-
tern catalogs. These catalogs present a collection of relatively independent so-
lutions to common design problems. As more experience is gained using these
patterns, developers and authors will increasingly integrate groups of related pat-
terns to form so-called pattern languages [276]. Although each pattern has its
merits in isolation, the strength of a pattern language is that it integrates solutions
to particular problems in important technical areas. An example is provided by
Schmidt and Buschmann in the context of development of concurrent networked
applications [275]. Each design problem in this domain – including issues related
to connection management, event handling, and service access – must be resolved
coherently and consistently and this is where pattern languages are particularly
helpful.

(d) Maturement and internalisation. Experienced architects know numerous pat-
terns by heart. Such architects have no trouble discussing designs in terms of
proxies, blackboard architectures, or three-tier CORBA-based client-server ar-
chitectures. Their exposure to and experience with those patterns has led to
internalised and matured pattern knowledge. The consequent shared, tacit vo-
cabulary can be employed at will, without the need to look up individual patterns
in order to understand what the other party means.

(e) Utilization and externalisation. When an architect has internalized several pat-
terns, the use of those patterns as a means for communication or design is a
combination of utilization (of the pattern) and externalisation (of the knowledge
about the pattern and its existence).

While the pattern-centric view aims to support the development of tacitly shared
application-generic architectural knowledge, the dynamism-centric view is much
more focused on explicit application-specific architectural knowledge. Although
some application-generic knowledge is utilized, the actual reasoning and reconfig-
uration uses application-specific knowledge. This architecture knowledge manage-
ment philosophy is therefore primarily based on two conversions:

(f) Refinement and combination. Corresponds to the formal reasoning over codi-
fied architectural solutions in terms of models that are consumable by non-human
agents. According to Bradbury et al., in a self-management system all dy-
namic architectural changes have four steps (initiation of change, selection of
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architectural transformation, implementation of reconfiguration, and assessment
of architecture after reconfiguration) which should all occur within the automated
process [50].

(g) Utilization and combination. Corresponds to formally specifying the applica-
tion’s components and connectors in generic languages such as ADLs or other
graph representations. Medvidovic and Taylor propose a comparison and clas-
sification framework for ADLs, enabling the identification of key properties of
ADLs and to show the strength and weaknesses of these languages [224]. In
their comparison, Medvidovic and Taylor point out that at one end of the spec-
trum some ADLs specifically aim to aid architects in understanding a software
system by offering a simple graphical syntax, some semantics and basic analyses
of architectural descriptions. At the other end of the spectrum, however, ADLs
provide formal syntax and semantics, powerful analysis tools, model checkers,
parsers, compilers, code synthesis tools and so on.

For the requirements-centric view, the primary goal is tracing knowledge about the
problem to knowledge about the solution. In co-development, an additional goal is
to connect knowledge about problem and solution so that a stakeholder’s image of
the problem and solution domain is refined. In this view, the primary architectural
knowledge conversions are:

(h) Refinement and socialization. Especially in co-development, architects and
stakeholders will interact to align system goals and architectural solutions. Such
interaction between ‘customer’ and ‘product developer’ is a prime example of a
situation in which tacit knowledge is shared (cf. [234]). Pohl and Sikora discuss
the need for co-development of requirements and architecture. They argue that
such co-design is only possible is there is sufficient knowledge about the (course)
solution when defining (detailed) system requirements: “instead of defining re-
quirements based on implicit assumptions about the solution, requirements and
architectural artifacts need to be developed concurrently” [235].

(i) Refinement and combination. Adding and maintaining traceability from re-
quirements to architecture is a refinement step that combines explicit knowledge
about elements from the problem and the solution space. Several techniques exist
to guide the transition from requirements engineering to software architecture. In
their 2006 survey, Galster et al. use architectural knowledge as knowledge about
(previous) architectural solutions that can be reused when encountering simi-
lar requirements in a new project. They present patterns as a useful container
for these reusable assets. Another approach for guiding the transition between
requirements and architecture is that of feature-solution graphs [56]. De Bruin
and Van Vliet use architectural knowledge as knowledge about quality concerns
(represented as features) and solution fragments at the architectural level (rep-
resented as solutions). These are modeled together as Feature-Solution graphs
in order to guide the explicit transition (or alignment) between the problem and
solution world.

(j) Refinement and externalisation. Externalisation of application-specific tacit
knowledge – such as concerns, goals, and the like – is an important part of
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the requirements process. Externalisation of tacit knowledge (problem-related
as well as solution-related) is a precondition for maintaining traceability.

(k) Refinement and internalisation. The interaction between architects and stake-
holders is not purely a matter of socialization. In co-development, for example,
specifications and design artifacts play a major role as well and may be an aid to
let the parties ‘re-experience’ each other’s experiences (cf. [234]). This internal-
ization of explicit application-specific architectural knowledge may consequently
lead to ‘new ideas and insights concerning both the envisioned system usage and
the architectural solution’ [254].

Finally, the essential philosophy of the decision-centric view is externalizing the ra-
tionale behind architectural solutions (i.e. ‘the why of the architecture’) that can then
be internalized and shape other people’s mental models, so as to prevent knowledge
vaporization. The architectural knowledge conversions central to this philosophy
are:

(l) Refinement and combination. Corresponds to reasoning about codified archi-
tectural solutions, which need not be fully automated but may involve decision
support. One such decision support approach is introduced by Robbins et al.,
who introduce the concept of ‘critics’ [267]. Critics are active agents that support
decision-making by continuously and pessimistically analyzing partial architec-
tures. Each critic checks for the presence of certain conditions in the partial
architecture. Critics deliver knowledge to the architect about the implications
of, or alternatives to, a design decision. Often, critics simply advise the archi-
tect of potential errors or areas needing improvement in the architecture. One
could therefore see critics as an automated form of the backlog that architects
use in the architecting process to acquire and maintain overview of the prob-
lem and solution space [146]. Another approach that fits this conversion is the
Archium tool proposed by Jansen et al. which is aimed at establishing and main-
taining traceability between design decision models and the software architecture
design [163].

(m) Utilization and combination. This conversion amounts to the reuse of codi-
fied, generic knowledge (decision templates, architectural guidelines, patterns,
etc.) ‘to take decisions for a single application and thus construct application-
specific knowledge’ [195] (see Chap. 12).

(n) Internalisation and abstraction. Based on experience and expertise, an archi-
tect may quickly jump to a ‘good’ solution for a particular problem. Such a good
solution can be a combination of several finer grained design decisions. This
combination of design decisions may become so common for the architect that
the solution is no longer seen as consisting of individual decisions. It may be hard
for the architect to reconstruct why a certain solution fits a particular problem;
the architect ‘just knows’.

(o) Utilization and externalisation. When a solution has been internalized, and
the architect ‘just knows’ when to apply it, it becomes difficult to see which
other solutions are possible. Part of the decision-centric philosophy (e.g., in [56])
is therefore to reconstruct and document the constituting design decisions.
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(p) Refinement and internalisation. This ‘consumption’ of architectural knowl-
edge takes place when people want to ‘learn from it or carry out some quality
assessment’ [195].

(q) Refinement and externalisation. The rationalization of taken architectural de-
cisions, i.e. reconstruction and explanation of the ‘why’ behind them, is a crucial
part of the decision-centric philosophy in which tacit knowledge is made explicit.
In this respect, the software architecting can apply the best practices known from
the ‘older’ and well-known field of design rationale. Regli et al. present a survey
of design rationale systems, in which they distinguish between process-oriented
and feature-oriented approaches [264]. Process-oriented design rationale systems
emphasize the design rationale as a ‘history’ of the design process, which is de-
scriptive and graph-based. A well-known example is the Issue-Based Information
System (IBIS) framework for argumentation. A feature-oriented approach starts
from the design space of an artifact, where the rules and knowledge in the specific
domain must be considered in design decision making. Often these type of design
rationale systems offer support for automated reasoning. A more recent survey
on architecture design rationale by Tang et al. provides information about how
practitioners think about, reason with, document and use design rationale [314].
It turns out that although practitioners recognize the importance of codifying de-
sign rationale, a lack of appropriate standards and tools to assist them in this
process acts as barrier to documenting design rationale. Fortunately, the field of
design rationale is working hard on developing more mature support. Recent de-
velopments have led to the creation of mature tooling such as Compendium and
SEURAT [63], and models such as AREL [316] (see also Chap. 9).

(r) Abstraction and combination. The construction of high-level structures (tem-
plates, ontologies, models) to capture and store architecture design decisions.
Various approaches to codify architectural design decisions in such as way have
been reported. Tyree and Akerman present a template to codify architectural de-
sign decisions together with their rationale and several other properties relevant
to that decision, such as the associated constraints, a timestamp, and a short de-
scription [325]. Kruchten proposes a more formal approach of codifying design
decisions by using an ontology [190] (see Chap. 3. Ran and Kuusela present work
on design decision trees [261].

2.4 State-of-the-Art in Architecture Knowledge Management

Based on the discussion of the four philosophies on architecture knowledge man-
agement and the primary architectural knowledge conversions of these philosophies,
we can identify a few single-philosophy approaches to architecture knowledge
management:

• Rationale management systems. In order to achieve refinement and externalisa-
tion of architectural knowledge, design rationale needs to be managed. Various
tools and methods have been proposed over the last decade for doing exactly this.
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• Pattern languages and catalogs. To allow for utilization and combination of ar-
chitectural knowledge architectural knowledge needs to be categorized in pattern
languages or catalogs. From these sources it can be quickly used in specific
applications. In addition it enables learning and reasoning.

• Architecture description languages. ADLs enable utilization and combination of
architectural knowledge in a formal way. Various types of ADLs exist, which
range in level of formality and purpose, the latter ranging from aiding under-
standing of software systems to enabling powerful analyses.

• Design decision codification. To support refinement and combination of archi-
tectural knowledge much effort has been put in methods, tools, and techniques
to codify architectural knowledge concepts. Design decisions are central to these
methods and tools, but also related concepts such as rationale and alternative
solutions are captured.

We saw earlier how the concept of ‘decisions’ seem to be an umbrella concept for all
views on architectural knowledge. We can now explain this better: ‘mature’ archi-
tecture knowledge management unifies conversions from all architecture knowledge
management philosophies, and is not merely limited to just one philosophy. This
concept, which we call ‘decision-in-the-large’, is related more to the architecting
process than to pure rationale management (which we could call ‘decision-in-the-
narrow’), even though codifying rationale and preventing knowledge vaporization
has been one of the prime drivers for the decision-centric philosophy. A focus on
‘decision-in-the-large’ seems driven more by architectural knowledge use cases than
by anything else, often under the concept ‘knowledge sharing’. A classification
of such use cases is presented by Lago et al. [195], which distinguishes between
architecting, sharing, assessing, and learning.

Obviously, some ‘decision-in-the-large’ approaches evolved from ‘decision-in-
the-narrow’ approaches. But the former starts to play a more prominent role in the
other philosophies, and hence the other views, too. In recent years, a shift towards
more overarching state-of-the-art approaches can be observed. Four main trends for
architecture knowledge management can be identified that mostly focus on specific
use cases for architecture knowledge management. These trends will be elaborated
upon in Sections. 2.4.1–2.4.4.

2.4.1 Sharing Architectural Knowledge

The trend of sharing architectural knowledge is focused on providing support for
management of various types of architectural knowledge (both application-generic
and application-specific). De Boer et al. propose a core model of architectural
knowledge that provides further insight in what architecting entails (e.g. how de-
sign decisions are made) and which knowledge concepts are worth focusing on in
support for architecture knowledge management [44]. This includes concepts that
have their origin in the pattern-centric, requirements-centric and decision-centric
view.
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From knowledge management literature it is known that knowledge sharing can
be achieved through codification or personalization [143]. Farenhorst et al. have
come to the conclusion that a hybrid strategy might work best. They propose a
platform for architectural knowledge sharing that combines codification techniques
(design decision repositories, document management facilities) with personalization
mechanisms (yellow pages, discussion forums) in order to enable Just-In-Time ar-
chitectural knowledge: delivery of and access to the right architectural knowledge,
to the right people, at the right time [113]; see also Chap. 8.

Another platform that allows managing different types of architectural knowl-
edge concepts is the process-based architecture knowledge management environ-
ment (PAKME) proposed by Ali Babar et al. [8]. This environment allows storing
application-generic architectural knowledge (such as general scenarios, patterns,
and quality attributes), and application-specific architecture knowledge (such as
concrete scenarios, contextualized patterns, and quality factors).

2.4.2 Aligning Architecting with Requirements Engineering

We observe a trend in architecture knowledge management literature towards align-
ing the architecting process with requirements engineering, since the two practices
seem to have much in common. Pohl et al. propose COSMOD-RE, a method for
co-designing requirements and architecture [253]. This methods supports the de-
velopment of detailed requirements based on the specified architecture and the
specified goals and scenarios. This co-design focus is fundamentally different from
the focus on traceability from requirements to architecture, a predominant focus in
the requirements-centric view.

With the transition from traceability to co-development/co-design the require-
ments engineering community appears to look beyond their own philosophy. In an
attempt to better understand the relationship of requirements and architecture, De
Boer and Van Vliet explore similarities between the two [46]. Based on their study
they argue that there is no fundamental difference between architecturally significant
requirements and architectural decisions, which also pleads for integrated meth-
ods and tools for architecture knowledge management that overarch requirements
engineering and architecting.

2.4.3 Intelligent Support for Architecting

This trend focuses on specific architecting use cases related to intelligent and/or
real-time support for architects. One of the state-of-the-art approaches focuses on
providing architects or reviewers with a reading guide when looking for specific ar-
chitectural knowledge [45]. To save time, architects use this intelligent discovery
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method to quickly get to the important knowledge while skipping less relevant
documentation.

Other intelligent support approaches focus on modeling architectural knowledge
concepts in such a way that learning and reasoning is stimulated. One exam-
ple is provided by Kruchten, who proposes an ontology of architectural design
decisions [190]. The templates he proposes allow acquiring insights in not only im-
portant properties of design decisions (e.g. the status), but also in the relationships
between design decisions (e.g. ‘enables’ or ‘conflicts with’). When proper visualiza-
tion techniques are used this information is very useful for architects in the decision
making process, for example to model the backlog [146].

2.4.4 Towards a Body of Architectural Knowledge

The last trend relates to establishing a body of architectural knowledge, to enable
both learning and reuse. Recently, several approaches for setting up such a body of
knowledge have been introduced. Lenin Babu et al. propose ArchVoc, an ontology
for software architecture [24]. Based on knowledge from major textbooks on soft-
ware architecture and by parsing parts of the web, they have constructed a software
architecture vocabulary for reuse purposes. Their ontology of software architecture
enables the architect in understanding the existing best practices and the relation-
ships between them and also provide a means to apply them to the new systems to
be developed.

The need for cataloging architectural knowledge is also expressed by Shaw and
Clements, who argue that Booch’ Handbook (cf. Sect. 2.3) “can provide impor-
tant exemplars, but engineers also need reference material that organizes what we
know about architecture into an accessible, operational body of knowledge” [295].
Chapter 12 gives a successful example hereof in the area of SOA infrastructure. This
body of knowledge is thus not comprised of only patterns, but also other types of
explicit application-generic architectural knowledge that can be utilized effectively.
In an attempt to further define these types of architectural knowledge, Clements
et al. have conducted empirical research to find out what set of duties, skills and
knowledge is most important for an architect [73]. Codification of this architec-
tural knowledge is perceived as “the beginnings of a road map for training and
mentoring.”

2.5 Justification

Our state-of-the-art overview on architecture knowledge management is the result
of an extensive literature review conducted based on a predefined protocol. More
details on this protocol can be found in [43]. The main phases executed are discussed
in the remainder of this section.
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In a systematic literature review of studies that define or discuss ‘architectural
knowledge’, we identified 115 such studies [43]. These 115 studies form the basis
for our discussion in this chapter. Consequently we will refer to these studies as the
set of core studies (C).

Since we are interested in the community structures that underly the topic of
architectural knowledge, we enriched our dataset with bibliographical links. We
assume the community structure can be found, or approximated, by taking into ac-
count the bibliographical references that various authors make to each others work.
Strong communities will display many intra-community references, and relatively
few references to work outside the community. There are two types of bibliographi-
cal references: references from studies in C to other studies, and references to studies
in C from other studies. We will use B (for ‘bibliography’) to denote studies that are
referred to from studies in C, and R (for ’referring’) to denote studies that refer to
studies in C. Hence, the mapping R →C → B summarizes the enriched data set used
throughout this chapter.1

To determine B, we simply took all references listed in the 115 studies from
C. To determine R, however, we had to do a ‘reverse search’ on the studies in C,
since the information needed is not present in C itself. For construction of R, we
used the Google Scholar search engine which provides such a reverse search facility
through its ‘cited by’ feature. While constructing R and B, we also obtained results
not necessarily found in sources from the sources list identified in our systematic
review (cf. [43]). We do not see this as a limitation of our methodology. The goal of
the dataset enrichment is different from the initial identification of primary studies in
the systematic review; in the enrichment we are interested in community structures,
and the different communities need not be limited to studies published through and
indexed by the sources used for the review.

Together, B, C, and R comprise a ‘social network’ of scholarly publications and
their interconnections. We analyzed this network using the Girvan–Newman algo-
rithm [134]. The Girvan–Newman algorithm discovers communities in a graph,
based on the ‘betweenness’ of edges, i.e., the number of shortest paths that run
through an edge. The algorithm iteratively calculates the edge betweenness and re-
moves the edge with the highest betweenness value, thereby eliminating edges that
act as connections between different communities. Eventually, the algorithm results
in a fully disconnected graph of ‘communities’ that consist of a single node.

Obviously, a disconnected graph is not the strongest community structure possi-
ble. Newman defines the modularity (Q) as a measure of strength of the community
structure discovered in a network [233]. High values of Q (0 ≤ Q ≤ 1) indicate net-
works with a strong community structure. Newman’s empirical evidence shows that
local maxima of Q correspond to reasonable community divisions, hence it is good
practice to stop the Girvan–Newman algorithm when a (local or global) maximum
Q-value has been obtained. In our case, the first local maximum of Q occurred when
the graph had been split up in 52 communities, while the global maximum occurred

1 Note that B, C, and R are not completely disjoint; there are several occurrences of studies from C
referring to other studies from C. Also, publications that are referred to from one study in C may
themselves refer to other (earlier) studies from C.



www.manaraa.com

2 Knowledge Management in Software Architecture 37

at 59 communities (Q ≈ 0.7832), which is extremely high (according to Newman,
values above 0.7 are rare; typical values fall in the range 0.3−0.7). Because of the
data enrichment process we followed and the way the Girvan–Newman algorithm
works, each of these 59 communities consists of at least one study from C, plus zero
or more publications from either B or R.

In order to assign meaning to the 59 communities that came out of the algorithm
we examined the set of papers for each of these communities in turn, and gave
them a label that corresponded best to the papers in that community. Often, the
non-core papers in the community did help in further characterizing the community
and helped in phrasing a suitable label. When this was more difficult (for example
when the non-core papers varied too much in subject), we looked more specifically
at the core papers in that community since these actually talk about architectural
knowledge and can therefore lead to more fitting for the community name. In the
end we ended up with 59 labels for the communities, although some of those did
overlap to a certain extent with each other.

In order to find out how exactly the communities had been discovered by the
Girvan–Newman algorithm we examined the hierarchical structure of the identified
communities. The hierarchical relations capture the order in which the communities
have been identified. Based on the order of community-split-ups we could assign
names to larger-order (i.e. parent) communities as well.

According to our definition a community should consist of at least two core pa-
pers (that talk about architectural knowledge) written by different authors. Based on
this rule we further analyzed the data. We limited the number of main communities
by removing the single-core-paper ones and the ones consisting of merely papers
by the same author(s). In the end this refinement culminated into the four main
communities discussed throughout this chapter: pattern-centric, dynamism-centric,
requirements-centric, and decision-centric.

2.6 Summary

In this chapter we have analyzed the state-of-the-art in architecture knowledge
management, and have shown that the concept of ‘architectural knowledge’ is be-
coming more prominent in literature. In Sect. 2.2.1 we have identified four main
views on architectural knowledge: a pattern-centric view, a dynamism-centric view,
a requirements-centric view, and a decision-centric view. The concept of ‘decision’
was found to be an umbrella concept that unifies parts of these views.

To better understand the concept of architectural knowledge in Sect. 2.2.2 we
have defined four main categories (or types) of architectural knowledge based on a
distinction between tacit and explicit knowledge on the one hand, and application-
generic and application-specific architectural knowledge on the other hand. In
total 16 knowledge conversions are possible between these four types of archi-
tectural knowledge. To articulate the commonalities and differences between the
four views, in Sect. 2.3 we stated their main philosophies of architecture knowledge
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management and elaborated upon the architectural knowledge conversions that are
central for these views. The conversions were further illustrated by examples of
related work.

Based on the discussion of the main philosophies we identified four single-
philosophy approaches for architecture knowledge management: rationale manage-
ment systems, pattern languages and catalogs, architectural description languages,
and design decision codification. All these approaches have both their origin in
and scope on only one of the main philosophies. In recent years, however, a shift
towards more overarching approaches can be observed. Four main trends for archi-
tecture knowledge management can be identified that mostly focus on specific use
cases for architecture knowledge management (e.g. sharing, learning, traceability).
This state of the art in architecture knowledge management indicates a shift from
‘decision-in-the-narrow’ to ‘decision-in-the-large’.

We expect the interest in architectural knowledge to keep increasing over the
coming years. Although it is unlikely that we will see a unified view on architectural
knowledge anytime soon, the observed trends in architecture knowledge manage-
ment indicate that future developments on managing architectural knowledge may
further align the different views. We expect the trend towards ‘decision-in-the-large’
to continue, since both researchers and practitioners aim for a better understanding
of what architects do, what their knowledge needs are, and how this architectural
knowledge can best be managed in the architecting process.

Acknowledgements This research has been partially sponsored by the Dutch Joint Academic
and Commercial Quality Research and Development (Jacquard) program on Software Engineer-
ing Research via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN about architectural
knowledge.
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Chapter 3
Documentation of Software Architecture
from a Knowledge Management Perspective –
Design Representation

Philippe Kruchten

Abstract In this chapter we survey how architects have represented architectural
knowledge and in particular architectural design. This has evolved over the last
3 decades, from very intuitive and informal, to very structured, abstract and for-
mal, from simple diagrams and metaphors, design notations, and specific languages.
As our understanding of architectural knowledge evolved, the importance of de-
sign rationale and the decision process became more and more prominent. There is
however a constant through this evolution: the systematic use of metaphors.

3.1 Introduction

When we speak about the documentation of software architecture, we are clearly
referring to the explicit aspect of architectural knowledge (see Sect. 1.2.2.1). “If it is
not written, it does not exist,” I used to tell members of an architecture team, prod-
ding them to document, i.e., make very explicit, what we had discussed at length in
a meeting, or the knowledge they had brought in from outside, their past experience
in general, and especially the decisions we had just made.

Architectural knowledge consists of architectural design – the blueprints of the
system under development – as well as the design decisions, assumptions, context,
and other factors that together determine why a particular final solution is the way
it is. Except for the architecture design part, most of the architectural knowledge
usually remains hidden and tacit – in the heads of the architects. An explicit rep-
resentation of architectural knowledge is helpful for building and evolving quality
systems [192].

In this chapter, we will therefore focus on the lower right of the four quadrants
of knowledge described in Fig. 2.1, the externalized part of architectural knowl-
edge (as opposed to tacit knowledge): the application-specific explicit knowledge,
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and, to a somewhat lesser extent, we will also focus on the lower left quadrant: the
application-generic explicit knowledge.

Architecture representation implies the use of models, architectural models. But
what is a model? M is a model of S if M can be used to answer questions about S,
where S is the system under consideration.

3.2 Evolution of Architectural Representation

The first reference to the phrase “software architecture” occurred in 1969 at a
conference on software engineering techniques organized by NATO [65]. Some
of our field’s most prestigious pioneers, including Tony Hoare, Edsger Dijkstra,
Alan Perlis, Per Brinch Hansen, Friedrich Bauer, and Niklaus Wirth, attended
this meeting. From then until the late 1980s, the word “architecture” was used
mostly in the sense of system architecture (meaning a computer system’s physi-
cal structure) or sometimes in the narrower sense of a given family of computers’
instruction set. Key sources about a software system’s organization came from Fred
Brooks in 1975 [54], Butler Lampson in 1983 [198], David Parnas from 1972 to
1986 [244, 245, 246, 247], and John Mills whose 1985 article looked more into the
process and pragmatics of architecting [227]. The concept of software architecture
as a distinct discipline started to emerge in 1990 [297]. A 1991 article by Winston
W. Royce and Walker Royce (father and son) was the first to position software ar-
chitecture – in both title and perspective – between technology and process [269].
Eberhardt Rechtin dedicated a few sections to software in his 1991 book Systems
Architecting: Creating and Building Complex Systems [263].

3.2.1 Boxes and Arrows

In the 1970s and through most of 1980s, because the concept of software archi-
tecture was not very well delineated from that of software design or “high-level
design”, there was very little agreement on how to document software architecture.
Various mixes of “boxes and arrows” diagrams were used as models, far too often
with not much precise semantics behind the boxes, and even less behind the arrows.
Some of this remains today, and constitutes what I call the “PowerPoint” level of
software architecture documentation. It is still very valuable in bridging the gaps
between various groups of stakeholders (the various people the architect has to deal
with), such as marketing, sponsors, quality, process, approval, certification, etc.

3.2.2 Views

Still today, modern software architecture practices rely on the principles that Perry
and Wolf enounced in the late 1980s in their pretty and simple formula: Architec-
ture = {Elements, Form, Rationale} [250]. The elements are the main constituents
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of any architectural description in terms of components and connectors, while the
nonfunctional properties guide the final shape or form of the architecture. Different
shapes with the same or similar functionality are possible, as they constitute valid
design choices by which software architects make their design decisions. These de-
cisions are precisely the soul of architectures, but they are often neglected during the
architecting activity as they usually reside in the architect’s mind in the form of tacit
knowledge that is seldom captured and documented in a usable form. Software ar-
chitecture started to take shape as an artifact of the design process that “encompasses
significant decisions about:

1. The organization of a software system
2. The selection of the structural elements and their interfaces by which a system

is composed with its behavior as specified by the collaboration among those
elements

3. The composition of these elements into progressively larger subsystems” (from
RUP [189, 152])

For years, the generalized practice and research efforts have focused solely on the ar-
chitectural representation itself. These practices have long been exclusively aimed at
representing and documenting the system’s architecture from different perspectives
called architectural views. These views, which represent the interests of different
stakeholders, are offered as a set of harmonized descriptions in a coherent and
logical manner and also used to communicate the architecture.

3.2.3 The Architecting Process

The period between 1996 and 2006 brought complementary techniques in the form
of architectural methods, many of them derived from well established industry
practices. Methods like RUP (at Rational, then IBM) [189, 152], BAPO/CAFR (at
Philips) [237], S4V (at Siemens) [147, 300], ASC (at Nokia), ATAM, SAAM and
ADD (at the SEI) [175], among others, are now mature design and evaluation prac-
tices to analyze, synthesize, and valuate modern software architectures. In some
cases, the methods are backed by architectural description languages, assessment
methods, and stakeholder-focused, decision-making procedures.

Since many of the design methods were developed independently [146], they ex-
hibit certain similarities and differences motivated by the different nature, purpose,
application domain, or the size of the organization for which they were developed.
In essence, they cover essential phases of the architecting activity but are performed
in different ways. Common to some of these methods is the use of design decisions
that are evaluated during the construction of the architecture. These decisions are
elicited by groups of stakeholders, under the guide of architects, but the ultimate de-
cision makers are (a small group – often a single person) architects. Unfortunately,
design decisions and their rationale were still not considered as first-class entities
because they lack an explicit representation. As a result, software architects cannot
revisit or communicate the decisions made, which in most cases vaporize forever.
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3.2.4 Architectural Design Decisions

Rationale was present in the 1992 formula of Perry and Wolf, but in reality, it was
rarely captured explicitly in a form that would allow it to be revisited. This remains
a prevalent issue.

Rus and Lindvall wrote in 2002 that “the major problem with intellectual capital
is that it has legs and walks home every day” [272]. Current software organizations
suffer the loss of this intellectual capital when experts leave. The same happens
in software architecture when the reasoning required for understating a particu-
lar system is unavailable and has not been explicitly documented. In 2004, Jan
Bosch stated that “we do not view a software architecture as a set of components
and connectors, but rather as the composition of a set of architectural design deci-
sions” [48, 161]. The lack of first-class representation of design rationale in current
architecture view models brought the need to include decisions as first-class citizens
that should be embodied within the traditional architecture documentation.

There are several benefits of using design rationales in architecture as a mean to
explain why a particular design choice is made or to know which design alterna-
tives have been evaluated before the right or the optimal design choices are made.
Benefits can be achieved in the medium and long term because documenting design
rationale prevents the need for architecture recovery processes, which are mostly
used to retrieve the decisions when design, documentation, or even the creators of
the architecture are no longer available. In other cases, the natural evolution of a soft-
ware system forces previous design decisions to be replaced by new ones. Hence,
maintaining and managing this architectural knowledge requires a continuous atten-
tion to keep the changes in the code and the design aligned with the decisions, and
to use these to bridge the software architecture gap.

3.2.5 Architectural Knowledge = Architectural
Design + Architectural Design Decisions

It is in this new context that Perry and Wolf’s old ideas [250] become relevant for
upgrading the concept of software architecture by explicitly adding the design deci-
sions that motivate the creation of software designs. Together with design patterns,
reference architecture, frameworks, etc., design decisions are a subset of the overall
architectural knowledge (AK) that is produced during the development of architec-
ture. Most of the tacit knowledge that remains hidden in the mind of the architects
should be made explicit and transferable into a useful form for later use, easing the
execution of distributed and collective decision-making processes.

The formula, Architectural Knowledge = Architectural Design + Architectural
Design Decisions, recently proposed by Kruchten, Lago and van Vliet [192], mod-
ernizes Perry and Wolf’s [250] idea and considers design decisions as part of the
architecture. We’ll use this formula: AK = AD + ADD, to structure the rest of this
chapter.
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3.3 Architectural Design

For many years, architectural knowledge was represented in very ad hoc fashion:
boxes and arrows of unspecified or fuzzy semantic value; the PowerPoint level
of architectural description. The challenge was to describe in a truly multidimen-
sional reality in a 2-dimensional space. Because the model, M, was poor, the set
of questions that could be answered regarding the system it represented remained
limited.

3.3.1 Viewpoints and Views

In the early 1990s, several groups around the world realized that the architecture
of a large and complex software-intensive system was made of multiple entangled
structures, and that the poor attempts of representing architecture using a single type
of flat blueprint was inherently doomed to fail. Different parties (or stakeholders)
are concerned by different aspects of an architecture. Each of these aspects is a
viewpoint, and can be addressed by a certain kind of architecture representation,
with a notation and language of its own. The views, however, do not correspond to a
decomposition of the architecture in parts, but are different projections, abstractions
or simplifications of a more complex reality.

Figure 3.1 is an example of a set of five views (from [152] and [188]). Very
similar sets of views appeared at Siemens [300] and elsewhere.

This concept of multiple views is not new, and Paul Clements traced it to a
1994 paper by David Parnas: “On a buzzword: hierarchical structure” [245]. An
architectural view is a partial representation of a system, from the perspective of a
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Fig. 3.1 RUP’s 4 + 1 views [152, 188]
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well-defined set of architectural concerns. A viewpoint is a set of conventions for
the construction, interpretation, and use of a given architectural view. In a way, the
viewpoint is to a view what the legend is to a map [158]. Of great importance are
the view correspondences, that is, the relationships that exist between the elements
in one view and the elements in another view.

Much has been written on the concept of views for architectural description, in
particular by a group at the SEI led by Paul Clements [71] in their 2003 book Docu-
menting software architecture: views and beyond and by Rozanski and Woods [270]
who introduced the refinement of perspective. The IEEE standard 1471–2000 [155]
provides a guide for describing the architecture of complex, software-intensive sys-
tems in terms of views and viewpoints, but it does not offer a detailed description of
the rationale that guides the architecting process (see below).

3.3.2 Architecture Description Languages

Over the last 20 years computer scientists in academia around the world have tried
to create architecture description languages (ADLs) to capture, represent, and rea-
son about essential elements of the conceptual architecture of a software-intensive
system. This follows the long tradition of programming languages: no computer sci-
entist would be “complete” who has not created his or her own language, and the
compiler that goes with it.

What ADLs have in common is that they are able to denote essential elements
of an architecture – components, package, as well as the relationship between these
components: connectors, interfaces, and to a certain extent some of the character-
istics and behaviour of these components and connectors – so that some form of
analysis, verification, and reasoning can occur, to derive or assess completeness,
consistency, ambiguity, performance, and other qualities. ADLs often offer both a
textual and a graphical notation, the intention being to have them readable by both
humans and machines.

ADLs have evolved from Rapide at Stanford, to ACME (CMU), Wright (CMU),
C2 (UCI), Darwin (Imperial College), to name only a few. Koala – developed by
Philips and based on Darwin – is the only one that has had some industry pene-
tration, and is used primarily to configure product-line instances in the consumer
electronics domain. Also AADL was developed by the SAE based on MetaH for the
automotive industry.

Finally, there has been some heated debate on the question of whether or not the
unified modeling language (UML) is an ADL. While not limited to architecture,
UML 2.0 certainly has all the elements to describe architecture. It is the notation
used to represent the 4 + 1 views above [152].

As an ADL is a notation to express an architectural model, encompassing the
key design decisions that bind the system, it should be an important tool for the
capture and representation of architectural knowledge. Unfortunately, so far, except
for UML, ADLs’ use has been very limited and mostly confined to academic labs.
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3.3.3 Application-Generic Knowledge: Patterns, Standards,
Frameworks

When moving from application-specific to application-generic knowledge, across
a domain or a technology or simply a community of architects, some application-
generic architectural knowledge can be developed and captured, using pretty much
the same tools and techniques we’ve seen above in Sect. 3.3.1 and 3.3.2.

Patterns and Frameworks
Tagging behind the work of the famous “Gang of Four”, Buschmann and his gang
of five captured architectural patterns [64] followed by a few others: SEI [74].
These patterns are technology neutral. But others can be technology and/or domain
specific, such as the architectural patterns developed in Microsoft’s practice and
patterns group’s handbook [225]. More ambitious, an architectural framework is a
set of common practices for architectural description established within a specific
domain or stakeholder community; it identifies generic concerns, and some prede-
fined viewpoints which frame these concerns. Examples of frameworks are TOGAF
(The Open Group Architectural Framework), MoDAF, the Zachman Framework,
RM ODP and ISO 19439 (FDIS).

Standards
IEEE Std 1471 [155] was the first formal standard for architectural description, in
active use since 2000. In 2007, IEEE 1471 became an international standard. Now
ISO and IEEE are jointly revising the standard as ISO/IEC 42010, Systems and
Software Engineering – Architecture Description [158].

There are new knowledge mechanisms in ISO/IEC 42010. In a sense, every stan-
dard is knowledge-based, embodying a community consensus by creating a filter on
the world through its definitions, and establishing rules on what to do when those
definitions apply. An important element of IEEE 1471:2000 was the explicit con-
ceptual model (or ontology) upon which the standard was built. That model has
been useful in codifying architectural practice, in education and in advancing the
state of the practice. The most obvious knowledge mechanisms in ISO/IEC 42010
are those reflecting resources readily reusable by architects from one project to
another: architecture-related concerns, stakeholder identification, and architectural
viewpoints.

In the ongoing revision (working draft 3, Nov 8, 2008), ISO/IEC 42010 [158] is
considering several new mechanisms:

• Codifying architectural frameworks: for large-scale reuse and knowledge sharing
• View correspondences: for linking between views
• Architectural models and model types: for finer-grain reuse
• Enhanced architecture rationale and decision capture

where IEEE 1471 codified a terminology base and best practices applicable to
individual architecture descriptions, ISO/IEC 42010 introduces a further level of
conformance in defining the notion of an architecture framework, which we define
here as a set of best practices for a particular community or domain, characterized
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by a set of concerns, stakeholders, viewpoints, and the correspondences between
those viewpoints.

From a knowledge perspective, the hope is that many of the practices currently
called architecture frameworks in the community can now be defined in a uni-
form way, thereby raising the level of understandability and interoperability – some
might say “reusability” – among architects working within different paradigms.
One mechanism added to support architecture frameworks is view correspondence
rules, a notion that was not ready for standardization in 2000 (R. Hilliard, personal
communication).

Methods
Finally, methods pertaining to software architecture do also capture some architec-
tural knowledge. This is the case for the Siemens method [147], IMB’s RUP [152],
the many SEI methods: ADD, ATAM, QAW [177, 34] or the Software Architecture
Review and Assessment handbook [236], for example.

3.4 Architectural Design Decisions

3.4.1 What Is an Architectural Design Decision?

In his 2003 paper, Jan Bosch [48] stressed the importance of design decisions as
“a first class citizen”, but did not describe in detail what they consist of. Tyree and
Ackerman describe the structure of an architectural design decision (see Table 1.1 in
Chap. 1) [325]. Kruchten in [190], then with Lago and van Vliet in [192], introduce
a more detailed template for documenting design decisions, particularly stressing
relationships between design decisions and between design decisions and other ar-
tifacts. Tang [314], Dueñas and Capilla [66, 103] have variations, and the SHARK
workshop in 2006 attempted to reconcile all these views.

Here is an example of attributes of an architectural design decision, from [190]
and [192]:

• Epitome (or the Decision itself). This is a short textual statement of the design
decision, a few words or a one liner. This text serves to summarize the decisions,
to list them, to label them in diagrams, etc.

• Rationale. This is a textual explanation of the “why” of the decision, its justi-
fication. Care should be taken not to simply paraphrase or repeat information
captured in other attributes, but to add value. If the rationale is expressed in a
complete external document, for example, a tradeoff analysis, then the rationale
points to this document.

• Scope. Some decisions may have limited scope, in time, in the organizations, or in
the design and implementation (see the overrides relationship below). By default,
(if not documented) the decision is universal. Scope might delimit the part of the
system, a life cycle time frame, or a part of the organization to which the decision
applies.
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Idea 0 Tentative 2 Decided 3 Approved 4

Rejected 1 Challenged 2

Obsolete 0

Fig. 3.2 Possible state machine for a decision, from [190]

• State. Like problem reports or code, design decisions evolve in a manner that may
be described by a state machine (see Fig. 3.2):

– Idea. Just an idea, captured so it is not lost, when brainstorming, looking at
other systems etc.; it cannot constrain other decisions other than ideas.

– Tentative. Allows running “what if” scenarios, when playing with ideas.
– Decided. Current position of the architect or architecture team; must be con-

sistent with other related decisions.
– Approved. Approved by a review, or a board (for low-ceremony organizations,

not significantly different than decided).
– Challenged. A previously approved or decided decision that is now in jeopardy;

it may go back to approved without ceremony, but can also be demoted to
tentative or rejected status.

– Rejected. A decision that does not hold in the current system; but we keep them
around as part of the system rationale (see subsumes below).

– Obsolesced. Similar to rejected, but the decision was not explicitly rejected
(in favour of another one, for example), but simply became “moot,” irrelevant,
e.g., as a result of some higher-level restructuring.

• Author, Time-stamp, History. The person who made the decision and when.
Ideally we collect the history of changes to a design decision. State changes
are important, but so are changes in formulation and scope, especially with
incremental architectural reviews.

• Categories. A design decision may belong to one or more categories. The list of
categories is open ended. Categories are useful for queries and for creating and
exploring sets of design decisions that are associated with specific concerns or
quality attributes.

• Cost. Some design decisions have an associated cost, so it is useful to reason
about alternatives.
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• Risk. Traditionally documented by exposure – a combination of impact and like-
lihood factors – this is the risk associated with taking a particular decision (see
IEEE Std 1540-2001, for example). It is often related to the uncertainty in the
problem domain, or to the novelty of the solution domain, or to unknowns in
the process and organization. If the project is using a risk management tool, this
should simply link to the appropriate risk in that tool.

• Related decisions. Decision A “is related to” decision B in any of the following
ways:

– Constrains: “must use J2EE” constrains “use JBoss”.
– Forbids (or excludes): “sin single point of failure” forbids “use a central

server”.
– Enables: “use Java” enables “use J2EE”.
– Subsumes: “all subsystems are coded in Java” subsumes “subsystem XYZ is

coded in Java”.
– Conflicts with: “must use dotNet” conflicts with “must use J2EE”.
– Overrides: “the Comm subsystem will be coded in C++” overrides “the whole

system is developed in Java”.
– Comprises (is made of, decomposes into): “design will use UNAS as middle-

ware” decomposes into “rule: cannot use Ada tasking” and “message passing
must use UNAS messaging services” and “error logging must use UNAS error
logging services” and, etc.

– Is Bound to (strong): A constrains B and B constrains A.
– Is an Alternative to: A and B address the same issue, but propose different

choices.
– Is Related to (weak): There is a relation of some sort between the two de-

sign decisions, but it is not of any kind listed above and is kept mostly for
documentation and illustration reasons.

See Fig. 3.3 for an example.

Fig. 3.3 Example of relationship between design decisions, from [203]
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• Relationship with External Artifacts. Includes “traces from,” “traces to,” and
“does not comply with.” Design decisions trace to technical artifacts upstream:
requirements and defects, and artifacts downstream: design and implementation
elements. They also trace to management artifacts, such as risks and plans.

These relationships are almost as important as the decisions themselves. It is through
these relationships that decisions can be put to practical use: understanding part of
the rationale – the reason for certain decisions, for the choices made from among
several alternatives, for the incompatibilities between choices – impacts the analysis
of “what is affected if we were to change X, or Z?”

3.4.2 A Taxonomy of Architectural Design Decisions

Architectural design decisions do not all play the same role in the architecting pro-
cess. Some are tightly coupled to the design itself, and can be traced directly to some
element (e.g., a class, a process, a package or subsystem, an interface) in the system
under development; other decisions are general properties or constraints that we im-
pose to the system, that sets of elements must satisfy, and, finally, some are linked
to the general political, sociological, and cultural environments of the development
or deployment.

3.4.2.1 Existence Decisions (“ontocrises”)

An existence decision states that some element/artifact will positively show up, i.e.,
will exist in the system’s design or implementation.

There are structural decisions and behavioral decisions. Structural decisions lead
to the creation of subsystems, layers, partitions, and components in some view of
the architecture. Behavioral decisions are more related to how the elements inter-
act together to provide functionality or to satisfy some nonfunctional requirement
(quality attribute) or connector. Examples:

Dextrous Robot (DR) shall have a Laser Camera System.

DR shall use the Electromagnetic (EM) communication system to communicate with Ground-
Control.

In themselves, existence decisions are not that important to capture since they are
the most visible element in the system’s design or implementation, and the rationale
can be easily captured in the documentation of the corresponding artifact or element.
But we must capture them to be able to relate them to other, more subtle decisions,
in particular to alternatives (see Fig. 2.1).
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3.4.2.2 Bans or Nonexistence Decisions (“Anticrises”)

This is the opposite of an existence decision, stating that some element will not
appear in the design or implementation. In a way, they are a subclass of existential
decisions.

It is important to document bans precisely because such decisions are lacking
any “hooks” in traditional architecture documentation. They are not traceable to any
existing artifact. Ban decisions are often made as possible alternatives are gradually
eliminated.

3.4.2.3 Property Decisions (“Diacrises”)

A property decision states an enduring, overarching trait or quality of the system.
Property decisions can be design rules or guidelines (when expressed positively)
or design constraints (when expressed negatively), of a trait that the system will
not exhibit. Properties are harder to trace to specific elements of the design or
implementation because they are often cross-cutting concerns, or they affect too
many elements. Although they may be documented in some methodologies or pro-
cess in design guidelines (see RUP, for example), in many cases they are implicit
and rapidly forgotten, and further design decisions are made that are not traced to
properties. Examples:

DR motion should be accurate to within +1 degree and +1 inch.

DR shall withstand all loads due to launch.

3.4.2.4 Executive Decisions (“Pericrises”)

These are the decisions that do not relate directly to the design elements or their
qualities, but are driven more by the business environment (financial), and affect
the development process (methodological), the people (education and training), the
organization, and, to a large extent, the choices of technologies and tools. Executive
decisions usually frame or constrain existence and property decisions. Examples:

• Process decisions:
All changes in subsystem exported interfaces (APIs) must be approved by the CCB
(Change Control Board) and the architecture team.

• Technology decisions:
The system is developed using J2EE.
The system is developed in Java.

• Tool decisions:
The system is developed using the System Architect Workbench.

Software/system architecture encompasses far more than just views and quality at-
tributes à la IEEE std 1471-2000 [155]. There are all the political, personal, cultural,
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financial, and technological aspects that impose huge constraints, and all the associ-
ated decisions are often never captured or they only appear in documents not usually
associated with software architecture.

3.4.3 Visualization of Set of Design Decisions

There are two delicate issues with sets of architectural decisions:

• How to capture them (and how much)?
• How to visualize them?

Capture is a process or method issue and will be covered in a subsequent chap-
ter. How many decisions and how much information must be captured are hard
questions that relate to the other, more fundamental, question: what is the scope of
architecture? In Chap. 1 we stressed that architecture is a global, high-level, early
process, aimed at making hard, long-lived, and hard-to-change choices. Still per-
tinent to the issue of knowledge representation is: how do we represent sets of
interrelated decisions?

Assuming that we have captured a set of architectural design decisions, along
the lines of Sect. 3.4.1 above, how would we want to visualize them? The tabular
approach is not very exciting (see Fig. 3.4).

We can also represent architectural design decisions as graphs, stressing the re-
lationships we have described in Sect. 3.4.1, but these graphs rapidly become very
complex (see Fig. 3.5), and we need to introduce mechanisms for:

• Eliding (eliminating certain relationships), or zooming in and out (getting more
or less information about decisions) (see Fig. 3.6).

Fig. 3.4 The tabular representation (from [202])
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Fig. 3.5 Decision graph from Spar Aerospace Dexterous Robot (fragment) [190]

Fig. 3.6 Zooming on a graph (from [203])

• Filtering (limiting the number of decisions in a view based on a set of criteria) or
clustering (grouping decisions according to some criteria) (see Fig. 3.7).

• Focusing (using some decision as an anchor, or a center for displaying other
decisions).

• Sequencing (laying out on a time line).

In particular, the focus on one particular decision supports the concept of impact
analysis: show me all the decisions that are affected by this one decision (see
Fig. 3.8) [190, 193, 201, 203, 204].

A sequence of design decisions over a period of time supports the concept of
incremental architectural review: what are the decisions that have been made or
changed since the last review?
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Fig. 3.7 Clustering decisions by classes (from [192])

3.4.4 A “Decisions View” of Architecture

If views and viewpoints are a good practice to document the design, and if a set of
design decisions offers a good complement in capturing (externalizing) additional
architectural knowledge, then there might be a way to combine the two approaches
for more cohesiveness and homogeneity. This is what Dueñas and Capilla [103]
have done in proposing a decision view of software architecture in which decisions
are entangled with design for each architectural view.

This new perspective extends the traditional views that are described in the IEEE
Std. 1471 [155] by superimposing the design rationale that underlies and motivates
the selection of concrete design options. Figure 3.9 depicts a graphical sketch of the
“decision view” [103, 191] in which design decisions are attached in the “4 + 1”
view model [188].
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Fig. 3.8 Impact analysis, starting from decision #11 [203]
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Fig. 3.9 A decision view embedded in the 4+1 views (from [191])
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3.5 Rationale, or, the Missing Glue

Rationale, that is, an explicit articulation of the reasoning, the motivation of the
choice implied by the decision, has been present in the mind of software architect
all along; it was explicit in the formula of Perry and Wolf in 1992 [250]. The ra-
tionale can range from a simple pointer to a requirement to an elaborate trade-off
analysis between alternative solutions. Often, it also has to show that various con-
straints or previous decisions are taken into account. But, in practice the effort to
develop tools to capture and manage design rationale has not been very successful,
as Jintae Lee eloquently described [200]. The primary reason is that capturing ratio-
nale, except for a handful of important decisions; it is too tedious and does not bring
any immediate benefits to the person doing the capture. The benefit is largely down
the line, weeks or months later and for stakeholders others than the decision maker.

We found that much of the rationale is actually captured by the relationship
between design decisions (DDs) and other elements, in particular by tracing DDs
to requirements (upstream), to other decisions (see above), and to elements in the
design and its implementation (downstream).

3.6 Metaphors

There is one constant, though, throughout the whole (short) history of software ar-
chitecture, and regardless of the formality of the approach: it is the systematic use
of metaphors to describe architectural elements an architectures. Metaphors give
meaning to form and help us ground our conceptual systems. A metaphor is a form
of language that compares seemingly unrelated subjects: a rhetorical trope that de-
scribes a first subject as being equal or very similar to a second object in some way.
A metaphor implies a source domain: the domain from which we draw metaphorical
expressions, and a target domain, which is the conceptual domain we try to under-
stand or to describe. The metaphor operates a cognitive transfer from the source to
the target; it says in essence: “<the target> is <the source>.”

In Metaphors we live by [197], Lakoff and Johnson describe metaphors as “a
matter of imaginative rationality.” They permit “an understanding of one kind of
experience in terms of another, creating coherence by virtue of imposing gestalts
that are structured by natural dimensions of experience. New metaphors are capable
of creating new understanding and, therefore, new realities.” (p. 235)

Metaphors are everywhere in software architecture. We use so-called ontologi-
cal metaphors to name things: “clients and servers”, “layers”, “pipes and filters”,
“department stores and shopping cart,” etc. We organize those using structural
metaphors that are often visual and spatial: “on top of”, “parallel to”, “aligned with”,
“foreground, background”, but include richer ones such as “network”, “web”, or
“hierarchy” [245]. We use a wide variety of containers: “packages”, “repositories”,
“libraries”, “volumes”, etc. In reality, in the target domain, i.e., in the memory of
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a computer, we would not find any up, down, aligned, packaged, etc. everything is
pretty scattered around; just look at a “core dump” file.

A mapping is the systematic set of correspondence that exists between con-
stituent elements of the source and the target domains. It allows some limited
reasoning in the target domain by analogy and inference. In our case, the tar-
get domain – software architecture – is rather abstract, and we try to draw from
source domains that are much more concrete. Then we use inference patterns from
the source conceptual domain to reason about the target one. “Ay, there’s the rub,
for” we may abuse the inference or have a faulty inference. This leads to flawed
metaphors, where the analogy “breaks” and the meaning in the target domain (in
software) is confusing at best. It is also very common when we attempt to combine
multiple metaphors, drawing form different source domains.

Metaphors have been used to describe general organization of software systems;
they have played an important role in the object-oriented movement, and then were
really put at the center of the pattern movement. No reasonable pattern can be suc-
cessful that is not supported by an elegant metaphor [64, 130]. More recently Beck
in eXtreme Programming (XP) described a practice he called “metaphor” to con-
vey the concept of a simple summary of the architecture [38]. It is unfortunate that
this practice has been the least successful of XP. Beck should have boldly called it
Allegory: an extended metaphor in which a story is told to illustrate an important
attribute of the subject, or even a Parable!

3.7 Summary

To return to our premises: Why do we want to represent architectural knowledge
explicitly? We want to:

• Gain intellectual control over a sophisticated system’s enormous complexity.
• Ensure the continuity, allowing these large systems to more effectively evolve and

to be maintained.
• Transfer this knowledge to others.

More tactically, we want to be able to

• Analyze and evaluate architectures, implement them, evolve them, assess some
of their qualities

• Support planning, budgeting, or acquisition activities

The more this architectural knowledge is left implicit, the more difficult or risky
these activities will be. Moreover, we also want to be able to abstract some more
generic architectural knowledge out of our collective knowledge in a given domain
or with given technologies. This knowledge is a combination of the following.

1. Architectural design, generic, brought in by using expert architects, educa-
tion, framework, methods, and standards. They are templates, exemplars of our
models.
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2. Architectural design, for the system under development, expressed using a com-
bination of appropriate notations and tools, adapted to the concerns of the various
parties involved (viewpoints). They are models of the system.

3. Architectural decisions, for the system under development, with their complex
interdependencies, and tracing upstream to requirements, context, and con-
straints, and tracing downstream to the design, and even the implementation.
They explain why the models are the way they are.
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Chapter 4
Strategies and Approaches for Managing
Architectural Knowledge

Torgeir Dingsøyr

Abstract Knowledge management is a large interdisciplinary field, and for com-
panies focusing on knowledge management, there are different possible strategies
and approaches. This chapter seeks to give an overview of the main approaches of
knowledge management that has been studied in other research disciplines, with
emphasis to research that has been done in software engineering. In particular, this
chapter will identify the main pros and cons of approaches in relation to managing
architectural knowledge.

4.1 Introduction

As described in the introduction to this book, knowledge management is a large
interdisciplinary field. When a company wants to improve knowledge management
practices, there are many possible options. The different options will focus on dif-
ferent types of knowledge. Some will require little resources, while other options
might require heavy investments over time. Any knowledge management approach
is dependent on humans, and the number and degree of involvement will vary be-
tween the options that are available. This chapter seeks to give an overview of the
main approaches of knowledge management that has been studied in other research
disciplines. I will give particular emphasis to research that has been done in software
engineering, building on a recent systematic review on knowledge management in
software engineering [41]. Further, I will use examples from studies to show aspects
of the possible approaches. Finally, I will discuss what the main pros and cons of
different approaches are in relation to managing architectural knowledge.

In the introduction, we distinguished between two main types of knowledge,
namely the tacit knowledge that humans are not able to express explicitly, such
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as “how to ride a bike”, and explicit knowledge, which is available in reports, books
and informal or formal communication. Hansen et al. argued in an influential paper
in Harvard Business Review published in 1999 [143], that companies should focus
primarily on one of two strategies for knowledge management:

• Codification – to systematise and store information that constitutes the knowledge
of the company, and to make this available to the people in the company.

• Personalisation – to support the flow of information in a company by having a
centralised store of information about knowledge sources like a “yellow pages”
of who knows what in a company.

Earl [107] has further classified work in knowledge management into schools (see
Table 1.3). The schools are broadly categorised as “technocratic”, “economic” and
“behavioural”. The technocratic schools focus on information technology or man-
agement in supporting employees in knowledge-work. The economic school focuses
on how knowledge assets relates to income in organisations, and the behavioural
schools focus on orchestrating knowledge sharing in organisations.

Choosing a knowledge management strategy means to take a high-level deci-
sion on either codification or personalisation, and then suggestions for actions can
be taken from a relevant school. Some have argued that one should combine the
schools, for example in settings such as global software development [92]. The
main reasons for focusing on codification is in order to reuse knowledge (for an
example hereof, see Chap. 12). Knowledge, which has been codified once can be
reused many times. This is what many consulting companies do, and a strategy that
requires heavy use of information technology. Critics of the codification strategy
would argue that often, knowledge will be difficult to transfer across different con-
texts. Knowledge might become irrelevant or even misleading, and it will take much
resources to maintain such knowledge. Personalisation is then a strategy that re-
quires less information technology resources, but where it is crucial to make arenas
where people who have knowledge to exchange can meet. In software engineering,
the recent focus on agile software development [106] is a choice to mainly rely on
tacit knowledge transfer, which is a personalisation strategy.

Earl’s knowledge management schools will support different strategies. The cod-
ification strategy is supported either through the systems or engineering school.
The personalisation strategy is supported either through the cartographic, organ-
isational or spatial school. In the next sections, I will present approaches in the
technocratic and behavioural schools, which I believe is relevant to managing archi-
tectural knowledge. I will not address the commercial and strategic schools, as they
focus on issues more relevant for management in a company than the development
department. Finally, I will discuss criteria for selecting an approach in Sect. 4.3.

4.2 Technocratic Approaches to Knowledge Management

The technocratic schools are the systems school, which focuses on technology
for knowledge sharing, using knowledge bases or “repositories”; the cartographic
school, which focuses on knowledge maps and creating knowledge directories;
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and the engineering school, which focuses on processes and knowledge flows in
organisations. I will now describe each of these schools more in detail.

4.2.1 Systems

The underlying principle of the systems school is that knowledge should be codified
in knowledge bases. A knowledge base or knowledge repository stores knowledge,
experience, and documentation, sometimes about one particular topic, for example
“load testing of web applications”. How the base is filled with information varies
between repositories, some allow all employees to freely write down experience
(such as in a wiki), while others have an editing process to make sure that experience
is documented in a standard manner. Davenport and Prusak [89] divide between
three types of knowledge repositories:

• External knowledge repositories such as competitive intelligence.
• Structured internal knowledge repositories, such as research reports, product-

oriented market material.
• Informal internal knowledge repositories, such as reports of “lessons learned”.

In software engineering, there are several studies of both structured internal repos-
itories (a central concept in the Experience Factory [33]), and of informal internal
repositories.

One of the studies of knowledge repositories in the software engineering litera-
ture describes a system, which is used extensively over time [99]. A screenshot is
shown in Fig. 4.1. This example shows the simple structure of a note of experience;
a title, describing text, keywords and the author of the experience note.

Examples of notes from this company were “how to remove garbage from an
image in SmallTalk”, “technical problems with cookies” and “an implementation of
the soundex algorithm in Java”.

The study reports that the repository worked as “a behavioural arena that people
use in different ways, to create a culture of knowledge sharing, and [the tool] lets
people experience that others make use of their knowledge”. The tool was promoted
by posters for example outside the staff canteen.

The study further shows that the knowledge repository was in heavy use in the
company. Almost all of the developers interviewed in the study mentioned that they
were using it, and had contributed with writing experience notes. However, the man-
agers were not as active in using the notes as others. The study found five types of
usage of the knowledge repository:

1. Solve a specific technical problem.
2. Get an overview of problem areas.
3. Avoid rework in having to explain the same solution to several people.
4. Improve individual work situation by adjusting technical tools.
5. Find who has a specific competence in the company.



www.manaraa.com

62 T. Dingsøyr

Fig. 4.1 A screenshot from a knowledge repository from a software consulting company

The combination of an easy to use tool and social incentives was identified in the
study as reasons for the success of the knowledge repository.

A critique of this approach to knowledge management has been that such repos-
itories are often not used in practice, creating what is referred to as “information
junkyards”. The systematic review of knowledge management research in software
engineering [41] identified one more study in addition to the one described above,
which shows that such tools are actually in use. The case studies show that it is pos-
sible to successfully implement knowledge repositories. Further the studies show
that benefits can be realised quickly and a repository can be used for other purposes
that support knowledge management than originally intended. However, it is im-
portant to note the importance of the context of the study, in particular the social
incentives for knowledge management.

What kind of implications does these findings have on knowledge repositories
aimed at architectural knowledge? First of all, a knowledge repository requires
a certain number of users to make it cost-efficient. For small companies, it will
probably make sense to make use of a personalisation strategy as much as possi-
ble. Some knowledge, however, will be of such a kind that is difficult to transfer
orally, and some kind of codification is needed. A lesson learned from the studies
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in software engineering is to try to keep the structure of a repository as simple as
possible.

4.2.2 The Cartographic School

The principal idea of the cartographic school is to make sure that knowledgeable
people in an organisation are accessible to each other for advice, consultation,
or knowledge exchange. This is often achieved through knowledge directories,
skills management systems or so-called “yellow pages”, which can be searched for
information as required.

Skills can be broadly categorised in two groups – technical skills: Knowledge
about technology issues, and soft skills: Competencies of a more personal and social
flavour, like organising and handling complexities in project work, enabling people
to contribute with their resources, and customer communication.

It is of major importance to get the right people with the right soft and technical
skills to work on software development projects. Many companies have developed
knowledge management tools to assist them in the tasks of managing technical
skills, by surveying what kind of knowledge people have, and make an index of it.
The process of surveying and indexing and making this type of information avail-
able, I will refer to as skills management, and I will focus on technical skills in the
following.

A study from a software company reports on how tools for managing skills are
used [100]. What purposes do such tools serve, and do they satisfy needs other than
the expected use in resource allocation?

The tool in the study would indicate employee experience levels of 250 technical
skills, such as “testing and testing techniques” in Fig. 4.2. Employees would rate
themselves between “irrelevant” and “masters fully”. In addition to the current level,
people would indicate which level they wanted to be at in the future.

The tool was found to be in use for resource allocation and for short-term problem
solving by identifying and asking experts on topics. Also, the problem solving had a
long-term effect in letting employees know who to ask next time. Further, the skills
management tool is used for identifying new project opportunities and to support
skills upgrading. The tool was found to support learning practices and motivates
use at both an individual and company (projects and processes) level. This double
capability enabled integration and knowledge exchanges both vertically (between
organisational levels) and horizontally (between individuals and projects).

Some employees were critical to how people evaluated their skills, others ques-
tioned the level of detail on the available skills, and yet others felt that information
on soft skills was lacking.

But all in all, it seems that the usage of the tool was very much implanted in the
daily work of the organisation, and the tool supports a multitude of functions.

An argument for this school is that although it requires a technical infrastructure,
the investment is low because there is no need to codify knowledge.
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Fig. 4.2 A skills management system from a software consulting company

How might this school be relevant for managing architectural knowledge? It does
not seem to be any studies of actual use of such systems for managing architectural
knowledge in the software engineering research literature. However, for companies
that employ a large number of people, knowledge of the particular skills of software
architects would be valuable, in order to solve architectural problems that emerge,
or for inviting people with particular skills to discussion or planning meetings.

4.2.3 The Engineering School

The engineering school of knowledge management has its roots in business pro-
cess reengineering. Consequently it focuses on processes. The systematic review
on knowledge management in software engineering found two major categories of
engineering school approaches. The first contains work done by researchers who
investigate the entire software process with respect to knowledge management. The
second contains work done by researchers who focus on specific activities and how
the process can be improved within this activity. The specific activities were formal
routines, mapping of knowledge flows, project reviews, and social interaction.

In relation to development processes for software, the systems and engineering
schools support sharing of explicit knowledge. Both of these schools require a tech-
nical infrastructure in order to facilitate knowledge sharing. However, a finding both
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1. Discuss pros and cons of the software architecture in the initial design meeting.
Document major design decisions as well as their rationale.

2. Organise discussions about the quality of the architecture during development;
especially focus on the architecture’s unforeseen consequences for the development.

3. Analyse the architecture after implementation through technical analysis of source
code, CVS logs and other explicitly available information – look for suspicious ef-
fects. This step focuses on architectural knowledge derived from the evolution of the
system.

4. Gather the responsible people for software architecture in a workshop - examine
initial pros and cons of the architecture, suspicious effects, and ask:

• Which major decisions were right?
• Which major decisions were not right?

5. Challenge the architecture and enact the learning process through:

• Analyse the impact of scenarios on architectural decisions;
• Reason about the associated rationale, to identify whether/how it may change;
• Modify the rationale and/or the architectural decisions to accommodate the

scenarios;
• Update the overall documentation of architectural knowledge.

6. Finally, analyse the cost and benefits of suggested architectural changes, and imple-
ment the most beneficial ones.

Fig. 4.3 Double-loop learning

from studies in other fields of the systems school [170] and studies of a specific
engineering approach, electronic process guides, is that it is difficult to get such
technology in actual use [98]. However, many companies have invested in such
infrastructure, and this indicates that we need a better understanding of the factors
that lead to effective knowledge sharing within these two schools.

Whether focusing on processes in general, or specific processes, the focus in
this school is on making descriptions of processes so that work can be done more
effectively or with higher quality than without such support. An example suggested
process within management of architectural knowledge, is the described in Fig. 4.3,
which aims at producing “thorough” learning, what some refer to as double-loop
learning [97].

I have not found studies of how processes for managing architectural knowledge
work in practice, but there are many frameworks for evaluating architecture, which
has a learning component, for example ATAM [176]. However, findings from soft-
ware engineering indicate that it is impossible to rely only on process descriptions
when performing work tasks, access to human experts or discussion partners will be
equally important. Also, studies from software engineering show that it is possible
to define and implement software process in a beneficial and cost-efficient manner
in small software organisations. However, special considerations must be given to
their specific business goals, models, characteristics, and resource limitations.
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4.3 Behavioural Approaches to Knowledge Management

The behavioural school consists of three subschools: 1) the organisational school,
which focuses on networks for sharing knowledge; 2) the spatial school, which fo-
cuses on how office space can be designed to promote knowledge sharing; and 3)
the strategic school, which focuses on how knowledge can be seen as the essence
of a company’s strategy. With respect to architectural issues, I believe the first two
schools are relevant. The strategic school focuses of how knowledge management
is used at a management level, and would not offer concrete guidance with respect
to product development.

4.3.1 The Organisational School

The organisational school focuses on describing the use of organisational structures
(networks) to share or pool knowledge. These structures are often referred to as
“knowledge communities” or “communities of practice” [55]. A community of prac-
tice has been defined as “Groups of people who share a concern, a set of problems,
or a passion about a topic, and who deepen their knowledge and expertise in this
area by interacting on an ongoing basis” [336].

A central concept with communities of practice is what McDermott [222] calls
the “double-knit” organisation. Double-knit refers to the fact that communities of
practice are another form of cohesion in a company than the normal organisa-
tion in departments or projects. This gives employees larger networks for informal
knowledge sharing, which can have positive effects.

A community of practice can be established or built on existing communication
in a company. Typically, a group of people with common interests will meet regu-
larly to discuss their topic of interest, and in addition to discussions develop tools or
other artifacts, which are useful in their own work. For example, for larger software
companies who organise their development work in projects, it would be natural
to foster networks on topics that are relevant to most projects, like testing, project
management and architecture. Table 4.1 shows possible benefits of a community of
practice for the organization and for individuals.

Table 4.1 Possible benefits of communities of practice (from [336])

Short-term value Long-term value

Benefits to the organization Arena for problem-solving Use knowledge strategically
Quick answers to questions Foresee technical

developments
Coordination

Benefits to the individual Access to expertise Forum for expanding skills
Help with challenges Network in the organization
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There are few studies of how such networks are applied in practice in software
engineering. We find three studies of such networks, describing the role of networks
and how they can be applied in improving software development processes. A find-
ing in one study is that networks are likely to be successful if they are based on
informal networks that may exist prior to the formal introduction.

With respect to software architecture, the organisational school is a low-cost op-
portunity for companies that have a sufficient number of employees working with
or interested in architecture to establish a forum. General knowledge management
studies advice that people-oriented approaches are used in addition to codification
initiatives, and communities of practice is then a possible choice.

4.3.2 The Spatial School

How can office space be designed for knowledge sharing? This is the central ques-
tion in the spatial school. The systematic review on knowledge management in
software engineering did not identify works in this area, but this is something, which
many companies use both to support creative processes and to give an image of
themselves as “modern”. Central arenas for knowledge sharing can be around the
water cooler, coffee machine, printer or canteen, it can be meeting rooms for differ-
ent purposes, like rooms especially designed for brainstorming. Whether employees
use cubicles, open-plan offices or cell offices, are decisions that will impact knowl-
edge sharing. In agile software development, some attention has been given to how
the design of the office space allows informal communication, and especially on
how status information is shown on “walls”. Such walls are popular to make status
information visible for team members and for colleagues, and typically display the
information shown in Fig. 4.4.

Fig. 4.4 A typical scrum wall, showing status of tasks
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Could this school be relevant for managing architectural knowledge? Several
elements could be relevant, both using the physical space available to show archi-
tectural design, status and discussions. Also, software architects could be placed
in open-plan offices in order to stimulate learning, if they do not reside with
development project teams.

4.4 Summary

As we have seen in the previous sections, there are many options when focusing on
knowledge management, and many are relevant for knowledge related to software
engineering and to architectural knowledge.

Software companies who want to establish better knowledge management prac-
tices need first of all to decide on which strategy is most important for them relating
to the architectural knowledge. Is the knowledge that is important for the company
of a kind, which can be shared between people, or is it of such a kind that some form
of codification is needed. The size of the company and number of software archi-
tects and software development projects will be important when choosing a strategy.
Larger volumes will in most cases require a greater need for codification. However,
the nature of the knowledge to be shared is also important, architectural knowledge
might be of a form, which makes codification more efficient than for example oral
communication. Companies who have chosen agile development methods might
benefit from managing architectural knowledge in the same way they manage other
software engineering knowledge, through oral communication in frequent meetings
and using visual assistance, like showing architectural information on a wall.
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Chapter 5
Supporting the Software Architecture Process
with Knowledge Management

Muhammad Ali Babar

Abstract The aim of this chapter is to describe how the software architecture pro-
cess can benefit from providing knowledge management support to the software
development professional in general and software architects in particular. This chap-
ter focuses on the kinds of support that can be provided to capture and manage
architectural knowledge consumed or generated during the software architecture
process. The chapter briefly describes different activities of the software architecture
process and identifies the kinds of actors involved and their respective knowledge
needs. It shows how to organize different elements of architectural knowledge into
a meta-model that can be initiated for tailoring organizational specific knowledge
models and developing tool support. This chapter is based on the premise that
managing knowledge is a management task rather than a technical problem of rep-
resenting knowledge. Hence, this chapter finally discusses the management aspects
by presenting a task model of managing architectural knowledge.

5.1 Introduction

Chapter 1 has provided an introduction and brief description of the important the-
oretical concepts related to the research and practice of software architecture and
knowledge management disciplines. This chapter intends to identify the needs of
knowledge management for different activities of the software architecture process
and how various approaches, techniques, and tools can be used to capture and man-
age the knowledge that is required or generated during the software architecture
process. By now, it has been mentioned many times that software architecting is
one of the most important processes in developing and evolving large scale software-
intensive systems. For the research in this chapter, software architecture is an artifact
as well as the process used to develop and maintain that artifact, which is composed
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of several large and small design decisions. Like any other process, the software
architecture process also involves various activities, tasks, roles, and artifacts.

Software architecting is considered a complex and knowledge-intensive pro-
cess [320, 268]. The complexity lies in the fact that software architecting involves
a lot of decision making. Several dozens of tradeoffs need to be made to satisfy
current and future requirements from a potentially large set of stakeholders, who
may have competing vested interests in architectural decisions [3, 137]. The knowl-
edge required to make suitable architectural design decisions and to rigorously
evaluate those design decisions is usually broad, complex, and evolving. The req-
uisite knowledge can be technical (such as patterns, tactics, and quality attribute
analysis models) or contextual, also called Design Rationale (DR), (such as de-
sign options considered, tradeoffs made, assumptions, and design reasoning) [10].
The former type of knowledge is required to identify, assess, and select suitable
design options for design decisions. The latter is required to provide the answers
about a particular design option or the process followed to select that design op-
tion [104, 139]. We consider both kinds of knowledge as architectural knowledge,
which is characterized by the information that is required or generated during the
software architecture process consisting of several activities such as architectural
analysis, architectural synthesis, architectural evaluation, architectural implemen-
tation and architectural maintenance [9, 146, 313]. All of these activities require
and generate technical as well as contextual architectural knowledge. Hence, we
assert that management of architectural knowledge is vital for improving an orga-
nization’s architectural capabilities. Researchers and practitioners agree that if not
appropriately managed, knowledge underpinning the key architectural decisions is
lost, and hence is unavailable to support subsequent decisions to maintain and evolve
the software architecture of a system [10, 23, 325].

Software architecture researchers and practitioners have developed several ap-
proaches to support the different activities of the software architecture process.
However, until recently there has been little effort spent on providing appropriate
guidance and/or effective infrastructure for capturing and managing the details on
which design decisions are based, along with explanations of the use of certain
types of design constructs (such as patterns, styles, tactics and so on). Chapter 12
provides one example hereof. It has been mentioned that such information may
prove quite valuable throughout the software development lifecycle [48, 109]. The
unavailability of suitable and systematic approaches to capturing and sharing ar-
chitectural knowledge may preclude organizations from growing their architectural
capabilities and reusing architectural assets. Moreover, the knowledge concerning
the domain analysis, architectural patterns used, design alternatives considered and
evaluated, and design decisions made is implicitly embedded in the architecture
and/or becomes the tacit knowledge of architects [48, 320, 325].

Recently, there have been several efforts aimed at improving the quality of
the software architecture process by developing effective knowledge management
approaches, techniques, and tools (hereafter called architecture knowledge manage-
ment (AKM) technologies) to facilitate the management of explicit and implicit
architectural knowledge generated during the architecting process; see Chap. 6. This



www.manaraa.com

5 Supporting the Software Architecture Process with Knowledge Management 71

chapter is aimed to enumerate different activities and tasks involved in the software
architecture process and to describe how those activities and tasks can be supported
by knowledge management. It seems pertinent to mention that the major objec-
tive of knowledge management is to improve business processes and practices by
utilizing individual and organizational knowledge resources. These include skills,
capabilities, experiences, routines, cultural norms, and technologies [256]. It has
already been mentioned in Chap. 1 that the software architecture process needs or
generates both explicit and implicit knowledge. These are mutually complementary
entities that interact with each other in various creative activities [234]. In the con-
text of this chapter, we define architecture knowledge management as an approach
to improving the software architecture process outcomes by introducing various pro-
cesses and practices for identifying, capturing architectural knowledge and expertise
and making it available for transfer and reuse across projects in an organization.
More formally, we use the definition of knowledge management provided in [109]
according to which knowledge management “is the process that deals with system-
atically eliciting, structuring and facilitating the efficient retrieval and effective use
of knowledge. It involves tacit knowledge of experts and explicit knowledge, codified
in procedures, process and tools. Knowledge management stretches from know-how
to know-what and know-why.”

5.2 Software Architecture Process

The software architecting process can be considered a macro level process, which
may involve several micro-level processes composed of many activities and tasks
for designing, documenting, evaluating and maintaining software architectures for
systems. The software architecture community (i.e., researchers and practitioners)
has proposed several design methods and models such as Attribute-Driven Design
(ADD) method [34], Business Architecture Process and Organization (BAPO) [15],
the rationale unified process, and Siemens’ 4 Views (S4V) [147]. Others have fo-
cused on providing architecture evaluation frameworks and process models such
as architecture tradeoff analysis method (ATAM), architectural level modifiabil-
ity analysis (ALMA), and quality-driven architecture design and quality analysis
method [220]. Recently, some researchers have proposed a general model of ar-
chitecture design based on five previous design models [146] (see also Chap. 1).
However, this model covers only three activities of the software architecture process:

1. Architectural analysis aims to define the problems to be solved. An architect
examines architectural concerns and context in order to come up with a set of
architecturally significant requirements.

2. Architectural synthesis aims to design architectural solutions for a set of archi-
tecturally significant requirements. An architect may consider several available
design options before selecting the ones that appear to be the most appropriate
and optimal.
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Fig. 5.1 A model of the architecture life cycle (reproduced from [313])

3. Architectural evaluation intends to ensure that the architectural solutions chosen
during the previous activity are the right ones. Hence, the proposed architectural
solutions are evaluated against the architecturally significant requirements.

There are two important points to be noted about the activities involved in this
general model of architecture design. First, the abovementioned activities do not
follow a sequential process as the waterfall model. Rather, these activities are un-
dertaken in a quite iterative/evolutionary manner and tasks related to one particular
activity can be performed and/or revisited while performing any other activity. Sec-
ond, it is asserted that these are only three stages of the lifecycle of a software
architecture that also needs to be implemented and maintained. Since one of the
main goals of capturing architectural knowledge is to support architecturally related
activities such as implementation and maintenance of a system and its software, we
have extended the Hofmeister et al. model [146] to include the later stages of the
lifecycle of a software architecture (see Fig. 5.1):

4. Implementing architecture involves designers and developers making several de-
cisions for detailed design and implementation. Hence, they need to ensure that
their decisions are in conformance with the architecture designed by an architect.

5. Maintenance of architecture involves making architectural changes as it evolves
because of enhancement and maintenance requirements, which places several
new demands on the architecture underpinning a system. From the knowledge
management perspective, prior design decisions are reassessed for the potential
impact of the required changes and new decisions are made to accommodate the
required changes without having damaging effects on the architectural integrity.

We will limit our focus on the knowledge management support for the main stages of
the lifecycle of software architecture: architectural analysis, architectural synthesis,
and architectural evaluation.
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5.3 Knowledge Management Problems

It has been mentioned that the software architecture process aims to solve a mix
of ill- and well-defined problems, which involve processing a significant amount
of knowledge. Architects require topic knowledge (learned from text books and
courses) and episodic knowledge (experience with the knowledge) [268]. One of
the main problems in the software architecture process is that the knowledge un-
derpinning the design decisions and the processes and activities leading to those
decisions [10, 48] is usually not sufficiently captured and managed. Hence, such
knowledge is not available or not easily accessible if needed later on. This type of
knowledge involves things like the rationale for selecting and the impact of certain
middleware choices on communication mechanisms between different tiers, why an
API is used instead of a wrapper, and who to contact to discuss the performance of
different architectural choices.

Much of this knowledge is episodic and usually not documented [320]. The ab-
sence of a disciplined approach to capturing and managing architectural knowledge
has many downstream consequences. These include:

• The evolution of the system becomes complex and cumbersome; resulting in
violation of the fundamental design decisions

• Inability to identify design errors and
• Inadequate clarification of arguments and lack of information sharing about the

design artifacts and process.

All these cause loss of substantial knowledge generated during the software archi-
tecture process, thus depriving organizations of a valuable resource, loss of key
personnel may mean loss of knowledge [139, 165, 320].

Software architecture researchers and practitioners have developed several meth-
ods (such as a general design model [146], APTIA [173], ATAM[72], PAS [338]) to
support the different activities and tasks of the software architecture process in a dis-
ciplined manner. Some of these do emphasize the need and importance of managing
architectural knowledge to improve reusability and grow organizational capabilities
in the architecture domain. Except for [71], there is no approach that explicitly states
what type of knowledge needs to be managed and how, when, where, or by whom.
Also, none of the current approaches provides any conceptual framework for iden-
tifying the required knowledge and tasks to be performed in order to provide the
required knowledge. Our previous research has concluded that the lack of suitable
techniques, guidance, tools, and resources is one of the main reasons that practi-
tioners and organizations are not able to design and deploy appropriate knowledge
management strategies to support the software architecture process [10, 12].

To address the issues caused by the general lack of knowledge management sup-
port throughout the lifecycle of the software architecture, researchers have recently
been quite active in developing appropriate approaches and suitable tools for intro-
ducing the knowledge management in the software architecture process. One of the
most focused topics among architecture knowledge management researchers has
been the identification and modeling of knowledge claimed to be needed during
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the software architecture process. Researchers have also identified the architectural
knowledge needed by software development teams, and have proposed the kinds
of incentives required to encourage people sharing architectural knowledge. Other
researchers have identified Use Case Models for managing architectural knowl-
edge [193]. These Use Case Models identify the actors who either consume and/or
generate architectural knowledge, and the Use Cases describing different ways in
which the identified actors can capture or use the architectural knowledge using an
appropriate knowledge repository. In order to provide suitable tooling support for
the identified knowledge needs and actors, software architecture researchers have
used either existing knowledge management tools [2, 193] or have developed new
ones (see Chapter 6).

The main objective of the architecture knowledge management technologies
(e.g., methods, techniques, tools) being developed is to help organizations as well
as individuals to capture and manage the different kinds of architectural knowledge
needed to support the software architecture process. Once the architectural knowl-
edge needed to support the software architecture activities have been identified, it
can be organized to provide some guidance for assessing and appropriately using the
existing architecture knowledge management techniques and tools or developing the
new ones where required.

5.4 Knowledge Needed

In this section, we describe the architectural knowledge needed to support the differ-
ent activities of the software architecture process in more detail. The activities that
are specifically addressed from the knowledge management perspective are shown
in Fig. 5.2, which also identifies some of the elements of architectural knowledge
either used or generated during the software architecture process.

Fig. 5.2 A model of software architecture process (Adapted from [146])
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Before we can discuss the knowledge needed or generated during different ac-
tivities of the software architecture process, it is appropriate to also describe who
are the potential consumers or producers of architectural knowledge. As previously
mentioned, several researchers have presented architecture knowledge Use Case
Models, which identify the actors who are expected to use, produce, and exploit
architectural knowledge. Some of these actors are software architects, project man-
ager, developers, researchers, maintainers, analysts, reviewers, and students. The
descriptions of these actors can be found in [193]. It has been mentioned that in this
chapter we would limit our discussion about those actors’ knowledge needs that are
usually involved in the activities shown in Fig. 5.2.

Figure 5.2 shows some of the key activities of the software architecture pro-
cess, which usually starts with the identification of , also called quality attributes.
The ASRs are usually derived from business goals in Quality Attribute Workshop
(QAW [29]) kinds of sessions in which all major stakeholders participate. During
this activity the stakeholders’ need to have access to quality attributes’ knowl-
edge, general scenarios, and domain knowledge. The stakeholders are expected
to bring with them the knowledge about the business drivers, organizational ex-
pectations of the system being developed and contextual and technical constraints.
Such knowledge is explicated during the QAW sessions. Such knowledge is con-
sidered architectural knowledge as it usually guides the architectural decisions.
Such knowledge needs to be captured for future reference, only scenarios may not
be enough. The facilitator of the QAW workshop should have access to knowl-
edge about the process to be followed, artifacts to be consulted or created, and
pre- and post-conditions of each of each of activity in this process. It should also
be known if there are some templates to be used in order to capture the knowl-
edge and how to customize those templates based on the project or organizational
requirements.

A software architect makes design decisions to satisfy the architectural require-
ments. Such decisions are made in an iterative process in which an architect or
design team identify the available options, evaluate them for tradeoff analysis and
select the most appropriate ones considering the technical, business, and organiza-
tional constraints. This process can be either ad-hoc or systematic by following the
steps recommended by a design method such as Attribute Driven Design (ADD),
which exploits the knowledge of architectural styles and design tactics. As shown
in Fig. 5.2, the architecture design decisions are mainly motivated by ASRs, which
provide the criteria used to reason about and justify the architectural choices [35].
The ADD method follows a recursive decomposition process in which each stage of
decomposition results in certain decisions by choosing suitable architectural tactics
and patterns to satisfy a set of ASRs. Architects usually enlist several design op-
tions, which are based on architectural patterns or tactics, that are expected to have
the potential of satisfying different architecturally significant requirements char-
acterizing the required quality attributes. The process of selecting suitable design
options has implicit or explicit analysis of each available design option or tradeoff
analysis between different design options [3]. Hence, the knowledge about differ-
ent design methods, requirements constraints, quality attribute models, architectural
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styles and patterns and their potential impact on different quality attributes is usually
needed to support the design decision making process. The architecture design
activity produces knowledge about the assumptions underpinning the design de-
cisions, tradeoffs performed, constraints considered, weaknesses, and strengths of
the chosen design decisions and the rejected ones.

Once made, architectural design decisions need to be documented to support the
subsequent design, analysis and development decisions. Software architecture com-
munity emphasizes the importance of documenting architecture design in terms of
views (see Chap. 3), each view presents a different perspective of the architecture.
During this activity, software architects need the knowledge about different ap-
proaches to describing software architectures (such as IEEE 1471 [155], V&B [71],
and 4 + 1 [188]), guidelines on tailoring such approaches for specific situations,
policies and procedures for documenting architectural decisions, and the kinds of
contextual knowledge that should be captured. Moreover, they also need to know
if there are generic or company specific templates to be used for describing key
architectural decisions and rationale underpinning those design decisions. Addition-
ally, it is also important to know which views are important to cater the needs of
stakeholders.

Architecture design, documentation, and evaluation are iterative steps in the pro-
cess [35]. Architecture evaluation attempts to ensure that the architectural decisions
are the right ones. The main tasks of the software architecture evaluation activ-
ity are: generating utility tree for characterizing quality attributes with scenarios,
identifying suitable reasoning frameworks to be used, determining and understand-
ing architectural approaches (e.g., styles, patterns, and tactics) used, evaluating the
proposed architectural approaches with respect to quality attributes and tradeoffs re-
quired, prototyping or simulating parts of the architectures that appear problematic,
appropriately and sufficiently recording evaluation findings along with the ratio-
nale and justifications, and visualizing the risks and risk themes with an appropriate
mechanism such as a results tree.

In order to perform these and other knowledge-intensive and complex tasks,
software architects and reviewers need to have knowledge about the available archi-
tecture evaluation methods (such as reported in [39, 72]), and techniques and how
to tailor them based on the contextual constraints. Several researchers have reported
comparative and evaluation studies of software architecture evaluation methods
in [13, 101, 174] that can be a good source of knowledge about the architecture
evaluation methods and techniques. Based on more than ten years of research in
software design and analysis methods and techniques, researchers from the Soft-
ware Engineering Institute (SEI) have also proposed ten principles of architecture
design and analysis [173]. A good knowledge of these principles and how to apply
them is expected to improve the software architecture process and artifacts. More-
over, the evaluation team also needs to know the rationale and contextual constraints
underpinning the proposed architectural choices. Such knowledge is expected to be
sufficiently captured during the architecture design and documentation and made
available to evaluators through a knowledge repository or suitable tool.
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Having been evaluated an architecture is implemented. The architecture is also
maintained in the face of changes and evolution. A modification request with ar-
chitectural implications may results in the beginning of the whole cycle of the
architecting process starting with identifying ASRs [35]. There are several kinds
of knowledge required to support these two activities, however, a discussion about
these activities is not within the scope of this chapter. Table 5.1 presents the main
points of this chapter.

5.5 Architectural Knowledge Organization

Having identified the key kinds of architectural knowledge required or consumed
during the software architecture process, the identified knowledge needs to be
organized in a conceptual model. We assert that a conceptual model for organiz-
ing architectural knowledge can help organizations to define and obtain data on
various aspects of their architectural assets and design rationale during the software
architecture process. A model of architectural knowledge is also one of the earliest
artifacts needed for the development of an automated system for storing and access-
ing the data that underpins the architecture design knowledge [182]. An appropriate
conceptual model is a prerequisite for developing an integrated support environment
to assist in the improvement of a certain software development process [166] such as
the software architecture process for which knowledge management support needs
to be provided. Recently, the software architecture community has proposed several
models of organizing architectural knowledge such as reported in [2, 10, 44, 155].

These approaches model the process and artifacts related to architectural
knowledge either using data modeling or Ontological approaches. Each of these
approaches conceptualizes architectural knowledge based on the literature, field
studies, and the experiences of the model’s developers. These approaches describe
the architectural knowledge consisting of entities and their properties, relationships
among those entities and constraints enforced on them. These approaches identify
the knowledge about the process, techniques, and artifacts used or generated by
stakeholders when dealing with software architectural aspects of a system. However,
these approaches model the architectural knowledge at different levels of abstrac-
tions, which are either too fine-grained or too coarse-grained; some of them also
combine the models of elements that make up architectural knowledge as well as
the activities to be performed on that knowledge.

We argue that a meta-model is needed in order to represent the architectural
knowledge organizations that can provide a framework for building tailored models
for representing architectural knowledge and building appropriate tooling support.
Hence, we have developed a meta-model to represent a high level organization of
architectural knowledge that has been identified as required by the different activi-
ties of the software architecture process presented in Sect. 5.4. Figure 5.3 shows the
meta-model that consists of primitives or semantic elements, which characterize the



www.manaraa.com

78 M. Ali Babar

T
ab

le
5.

1
Su

m
m

ar
y

of
th

e
ac

tiv
it

ie
s,

ta
sk

s,
pa

rt
ic

ip
an

ts
an

d
ne

ed
ed

A
K

fo
r

th
e

so
ft

w
ar

e
ar

ch
it

ec
tu

re
pr

oc
es

s

A
ct

iv
it

y
na

m
e

M
ai

n
ta

sk
s

M
aj

or
pa

rt
ic

ip
an

ts
A

K
ne

ed
ed

A
rc

hi
te

ct
ur

al
an

al
ys

is
T

he
m

ai
n

ta
sk

s
ar

e:
ex

am
in

e
ar

ch
it

ec
tu

ra
l

co
nc

er
ns

an
d

co
nt

ex
ti

n
or

de
r

to
co

m
e

up
w

it
h

A
SR

s.
Id

en
ti

fy
m

ai
n

qu
al

it
y

at
tr

ib
ut

es
.

D
ev

el
op

qu
al

it
y

se
ns

it
iv

e
sc

en
ar

io
s.

Pr
io

ri
ti

ze
th

e
sc

en
ar

io
s.

Fa
ci

li
ta

te
a

w
or

ks
ho

p
as

Q
A

W
.

E
va

lu
at

io
n

m
an

ag
er

/p
ro

je
ct

m
an

ag
er

/e
va

lu
at

io
n

te
am

/a
rc

hi
te

ct
an

d
w

ho
ev

er
re

qu
ir

ed

B
us

in
es

s
go

al
s,

or
ga

ni
za

ti
on

al
pr

oc
es

se
s

an
d

pr
oc

ed
ur

es
,g

en
er

al
sc

en
ar

io
s,

co
nc

re
te

sc
en

ar
io

s,
gu

id
el

in
es

fo
r

ru
nn

in
g

a
Q

A
W

w
or

ks
ho

p,
si

m
il

ar
sy

st
em

s
de

ve
lo

pe
d.

A
rc

hi
te

ct
ur

al
sy

nt
he

si
s

T
he

m
ai

n
ta

sk
s

du
ri

ng
th

is
st

ag
e

ar
e:

cl
ar

if
yi

ng
an

d
un

de
rs

ta
nd

in
g

A
SR

s,
id

en
ti

fy
in

g
su

it
ab

le
de

si
gn

op
ti

on
s,

ev
al

ua
ti

ng
th

e
de

si
gn

op
ti

on
s

w
it

h
re

sp
ec

t
to

de
si

re
d

le
ve

l
of

di
ff

er
en

t
qu

al
it

y
at

tr
ib

ut
es

,p
er

fo
rm

in
g

tr
ad

eo
ff

s,
se

le
ct

in
g

su
it

ab
le

de
si

gn
de

ci
si

on
s.

A
rc

hi
te

ct
an

d
se

ni
or

so
ft

w
ar

e
de

si
gn

er
s

G
en

er
ic

de
si

gn
op

ti
on

s,
ar

ch
it

ec
tu

ra
ls

ty
le

s
an

d
de

si
gn

pa
tt

er
ns

,t
ac

ti
cs

.R
at

io
na

le
un

de
rp

in
ni

ng
pr

ev
io

us
de

si
gn

de
ci

si
on

s
an

d
qu

al
ity

at
tr

ib
ut

es
.K

no
w

le
dg

e
ab

ou
tt

he
ex

is
ti

ng
or

fu
tu

re
sy

st
em

s
to

be
in

te
gr

at
ed

.

A
rc

hi
te

ct
ur

al
ev

al
ua

ti
on

T
he

m
ai

n
ta

sk
s

ar
e:

ge
ne

ra
ti

ng
ut

il
it

y
tr

ee
,

se
le

ct
in

g
su

it
ab

le
re

as
on

in
g

fr
am

ew
or

ks
,

as
se

ss
in

g
th

e
su

it
ab

il
it

y
of

de
si

gn
de

ci
si

on
s

an
d

us
ed

pa
tt

er
ns

,r
ec

or
di

ng
fin

di
ng

s
an

d
ju

st
ifi

ca
ti

on
s

fo
r

th
em

,a
nd

bu
il

di
ng

a
re

su
lt

s
tr

ee
to

vi
su

al
iz

e
ri

sk
s

an
d

no
n-

ri
sk

s.

E
va

lu
at

io
n

te
am

,a
rc

hi
te

ct
an

d
al

l
m

aj
or

st
ak

eh
ol

de
rs

.
R

at
io

na
le

fo
r

de
si

gn
de

ci
si

on
s.

R
ea

so
ni

ng
fr

am
ew

or
k,

st
yl

es
,p

at
te

rn
s,

an
d

ta
ct

ic
s.

C
he

ck
li

st
s

of
ta

sk
s

to
be

pe
rf

or
m

ed
du

ri
ng

ev
al

ua
ti

on
,i

nf
or

m
at

io
n

ab
ou

td
if

fe
re

nt
ar

ch
it

ec
tu

re
ev

al
ua

ti
on

pr
oc

es
s

m
od

el
s

an
d

m
et

ho
ds

.S
ta

nd
ar

ds
an

d
pr

oc
ed

ur
es

to
be

fo
ll

ow
ed

an
d

te
m

pl
at

es
fo

r
re

co
rd

in
g

ev
al

ua
ti

on
fin

di
ng

s.
A

rc
hi

te
ct

ur
al

im
-

pl
em

en
ta

ti
on

T
he

m
ai

n
ta

sk
s

ar
e:

m
ak

in
g

de
ta

il
ed

de
si

gn
an

d
im

pl
em

en
ta

ti
on

de
ci

si
on

s,
im

pl
em

en
ti

ng
de

si
gn

,e
ns

ur
e

im
pl

em
en

ta
ti

on
co

m
pl

ie
s

w
it

h
ar

ch
it

ec
tu

ra
ld

ec
is

io
ns

an
d

ot
he

r
co

ns
tr

ai
nt

s.

D
es

ig
ne

rs
an

d
de

ve
lo

pe
rs

R
ea

so
ni

ng
K

no
w

le
dg

e
to

un
de

rs
ta

nd
th

e
ar

ch
it

ec
tu

re
de

si
gn

,i
m

pl
em

en
ta

ti
on

st
an

da
rd

s,
st

re
ng

th
s

an
d

w
ea

kn
es

se
s

of
im

pl
em

en
ta

ti
on

fr
am

ew
or

ks
.

A
rc

hi
te

ct
ur

al
m

ai
nt

en
an

ce
M

an
y

of
th

e
ta

sk
s

pe
rf

or
m

ed
du

ri
ng

th
e

pr
ev

io
us

st
ag

es
.I

m
pa

ct
an

al
ys

is
is

pe
rf

or
m

ed
to

as
se

ss
po

te
nt

ia
le

ff
ec

ts
.

D
ev

el
op

er
,d

es
ig

ne
r,

an
d

ar
ch

it
ec

t.
A

pa
rt

fr
om

th
e

kn
ow

le
dg

e
re

qu
ir

ed
du

ri
ng

th
e

pr
ev

io
us

st
ag

es
,j

us
ti

fic
at

io
n

fo
r

ch
an

ge
s,

an
d

im
pa

ct
an

al
ys

is
te

ch
ni

qu
es

.



www.manaraa.com

5 Supporting the Software Architecture Process with Knowledge Management 79

Evaluation

Rationale

ScenarioStakeholder

Software
Architecture

Architecturally
Significant

Requirement

Architecture
Description

Pattern

Satisfies

Influences

Captured by

Addresses Addressed by

Documents

Effected
by

Has

Contains

Extracted
From

Created by

Participates

Has

EffectsSpecify

Specified by

Uses

Creates

Involves

Architecture
Design

Decision

View

Used in Captures

Documented
by

Includes Included in

Interests to

Interested in

Has

Belong to

Captured by

Contains

Part of

Consists of

Used in

Uses

Need Reviews

Fig. 5.3 A model of organizing architectural knowledge for supporting the software architecture
process

constructs and terminology used when describing the software architecture process
and its artifacts.

The model has been built by abstracting entities and their relationships from sev-
eral available models such as DAMSAK [10], IEEE 1471 [155], and the SARA
report [236]. The process of constructing this model was guided by the principles
of the Entity Relationship (ER), a formal modeling methodology [36], and by us-
ing the Unified Modeling Language (UML) for database design [230]. Since the
models upon which the meta-model is based have been taken from the literature
or have been assessed with reference to the literature on software architecture such
as reported in [155, 236], we do not consider the need of evaluating this meta-
model. Following paragraphs provide a brief description of each entity and the type
of architectural knowledge that is captured by each of them.

The Stakeholder entity characterizes those people who have any kind of interest
in the architecture process or product [236] such as developers, testers, managers,
evaluators, maintainers and many more [72]. This entity aims to manage the knowl-
edge required to keep track of the people who contribute to or consult a knowledge
base. Such information can be used to design a recognition program for motivating
people to contribute or use an architectural knowledge repository. This entity also
helps manage the knowledge about how a stakeholder is related to architectural sig-
nificant requirements, scenarios, architectural views, and evaluation performed on a
proposed software architecture.

Architecturally significant requirements (ASRs) are those requirements that
have broad cross-functional implications. Such requirements are often called non-
functional requirements (NFRs), also called quality attributes (QAs) [34, 236], but
can also include functional aspects such as security functionality. This entity is used
to describe and explain the various aspects of an ASR. Such as the relation of an



www.manaraa.com

80 M. Ali Babar

ASR with patterns to be used in a software architecture designed to satisfy that
ASR. An ASR can be supported or hindered by one or more patterns used in a par-
ticular architecture decision. Moreover, an ASR can also have relations with other
knowledge entities such as Stakeholders that may have proposed or opposed it and
the scenarios that have been used to specify that ASR.

Software architecture entity can represent the knowledge about the whole ar-
chitecture of a system. There have been given several definitions of software
architecture (see Chap. 1), however, this conceptual model focuses on the software
architecture entity as the set of architectural design decisions (i.e., dozens, hun-
dreds depending upon the size of a system) taken to satisfy the required ASRs.
The meta-model also represents that each architecture needs to be described using a
standardized way of documentation and evaluated with respect to ASRs.

Scenario is a textual definition of an ASR. The scenario entity in the concep-
tual model represents the knowledge that needs to be captured and managed about
a scenario. Such a scenario can be classified into different types of ASR such as
availability, reliability, and modifiability [34]; a scenario can be either elicited from
a stakeholder or distilled from a pattern. Moreover, a scenario also has a history of
changes made to it. An abstract scenario can help identify one or more analysis mod-
els to analyze design decisions. The knowledge about a scenario also includes how
it is related to other architectural knowledge entities such as stakeholders, patterns,
and architecturally significant requirements.

Pattern characterizes known solutions to recurring problems in a particular con-
text [130]. The pattern entity represents the pattern-specific knowledge. In the
conceptual model, the term pattern denotes design pattern, architecture patterns, or
architectural styles. A pattern provides a mechanism for documenting and reusing
design knowledge accumulated in terms of problem, solution, forces, and usage ex-
amples by experienced practitioners. According to our organization of architectural
knowledge, each pattern can be related to the architectural design decisions in which
it is being used; scenarios that may have been extracted from that pattern; and ASRs
that may be positively or negatively impacted by that pattern.

Architecture design decision entity represents the knowledge that needs to be
captured and managed about the design decisions that make up a software architec-
ture. An architectural design decision is a high level design decision taken to satisfy
a set of ASRs. If we conceptualize the architecture design process as a decision
making activity, an architecture decision is a choice among design options based on
certain criteria [139]. A decision may have a history of the changes made to it along
with any consequences of the changes on the other decisions. There may be interde-
pendency between various decisions. For example, an earlier decision may limit the
options available or impose some constraints on subsequent decisions. Any changes
in a decision should consider the consequences for the dependency relationships.
Apart from the knowledge about the technical decisions taken to design an architec-
ture, this entity also represents the knowledge about the process followed to make
the design decisions.

Rationale entity represents the knowledge about the contextual information and
reasons for making an architectural decision as well as design options considered
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and evaluated. The rationale entity also characterizes all the background informa-
tion that may be used or generated during the process of making architectural design
decision. Such information is valuable to people who deal with the product of the
decision making process [48]. Each architectural design decision is supposed to
have a rationale attached to it and that rationale is captured along with the architec-
ture description. Hence, the Rationale entity is associated with both the architecture
design decision and the architecture description entities.

Architecture Description entity characterizes the data required to document an ar-
chitecture according to certain standards or approaches (see Chap. 3). The V&B [71]
approach also emphasizes the need to capture information that cuts across several
views as well as rationale for architectural design decisions. This entity is related to
architecture description, software architecture, and view entities.

A View or an architectural view is a model of an architectural structure or other
elements of software architecture from the perspective of a related set of concerns
that interest to a particular group of stakeholders [155]. Views are used to describe a
software architecture throughout its lifecycle for the specific purpose of understand-
ing and analyzing the different aspects of system development and performance.
This entity represents the contemporary practice in this discipline where views are a
necessary part of any architectural description; and views provides stakeholders with
necessary knowledge to design architectural structures and to understand different
aspects of a system’s design.

The Evaluation entity characterizes the architectural knowledge required and
generated during architecture evaluation. It also captures and managed the knowl-
edge about the activities undertaken to determine the quality of an architectural
design decisions and to predict the quality of a system whose architecture comprises
of the evaluated architectural design decisions. Moreover, it also represents the
knowledge that is captured about the findings from evaluating a given architecture.
This entity is related with stakeholders, who participate in evaluation, scenarios,
which are used in evaluation, and the software architecture being evaluated.

5.6 A Model of Architecture Knowledge Management

Having identified the architectural knowledge consumed or produced in different ac-
tivities of the software architecture process and presenting a meta-model to represent
a high level organization of the key elements of the architectural knowledge, we are
going to discuss the tasks required to manage architectural knowledge. The propo-
nents of knowledge management discipline claim to help organizations to improve
their technical capabilities and processes [89, 322]. Like many other disciplines,
the methods, techniques and tools developed by the knowledge management com-
munity have raised great expectations in the software engineering community as
well. The software engineering community has been investing significant amount
of resources to leverage the knowledge management technologies to support differ-
ent activities and tasks involved in developing software [41, 272]. The results from
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deploying knowledge management approaches in software engineering have been
quite mixed because of several technical and non-technical factors [93, 121]. One
important message that has emerged from all the successful and failed attempts of
knowledge management in software engineering is that knowledge management as a
discipline does not intend to ignore the value or need to address the key software de-
velopment aspects, such as process and technology, nor does it seek to replace them.
Instead, the knowledge management technologies (i.e., methods, techniques, and
tools) work towards software process improvement by explicitly and systematically
addressing the needs of managing knowledge. This includes acquiring, structuring,
storing and maintaining knowledge [272].

Though, each of the knowledge management approaches mentioned in Chap. 1
(codification, personalization, hybrid) are being explored for supporting the ar-
chitecture knowledge management, a vast majority of knowledge management
initiatives in software architecture discipline have mainly adopted the codification
approach backed by centralized repositories to store and disseminate architectural
knowledge [7, 8]. While the codification supported by appropriate knowledge-based
systems has proved useful in various areas of software engineering, it also suffers
from serious limitations, which may turn the organizational knowledge repositories
into knowledge graveyards [7]. To address the limitations of these approaches, orga-
nizations have recently started applying codification and personalization approaches
in terms of a hybrid strategy: one of them in a primary and the other in a secondary
role [139]. A hybrid approach to managing knowledge is considered an effective and
efficient mechanism of maximizing the benefits of codification and personalization
strategies for globally distributed software development teams [94].

We have already mentioned that this chapter is concerned with describing archi-
tecture knowledge management from the perspective of management tasks involved.
To this objective, we have adopted a knowledge management task model to describe
different aspects of architecture knowledge management support for the software ar-
chitecture process. Like the work of other software engineering researchers reported
in [104, 185], our approach to managing architectural knowledge can also be de-
scribed using a knowledge management task model shown in Fig. 5.4. This model
has been modified for architecture knowledge management based on the original
model described in [256]. This model consists of two strategic and six opera-
tional tasks. These tasks are called the architecture knowledge management building
blocks, which represent the activities directly related to managing architectural
knowledge. The model presents an integrated approach to managing architectural
knowledge. This means ignoring one or more of the building blocks can interrupt
the cycle of managing architectural knowledge as described in [256]. For example,
if contextual information about designing an artifact in a certain way is not pre-
served, it disappears from organizational or individual memory, making reusability
of that artifact difficult. When a certain piece of knowledge about an architectural
artifact disappears, it is called vaporization of architectural knowledge [48] and the
tasks of the knowledge management models are intended to stem and/or minimize
the architectural knowledge vaporization.
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Fig. 5.4 A task model of architecture knowledge management

Setting and monitoring architectural knowledge goals, a strategic task, describes
the objectives of managing knowledge and the expected benefits. For instance, some
of the strategic goals for managing architectural knowledge can be to improve the
software architecture process, provide a better support for architectural decision
making, reusability of architectural artifacts, and effective and efficient architecture
maintenance and evolution. Architectural knowledge measurement is another strate-
gic level task aimed at ensuring the quality of the knowledge management process
by comparing the results with the expected benefits. This task needs to define and as-
sess several metrics for that purpose. For example, the number of concrete scenarios
instantiated from general scenarios, the number of design options transformed into
architecture decisions applied in different projects, and the number and positions of
employees who accessed or contributed to organizational knowledge repository, and
others.

The feedback from the architectural knowledge measurement results in modi-
fications in the architectural knowledge goals. It is expected that the design and
performance of these two strategic level tasks in any system of architecture knowl-
edge management can be guided by the Quality Improvement Paradigm [32] and
goal/question/metric (GQM) approach [33]. For example, the goal (G) of an ar-
chitecture knowledge management initiative can be to improve the reusability of
design decisions for architecting systems in the same domain such as online share
trading applications. That specific goal can be decomposed into specific questions
(Q) such as how many design decisions about a database connection management
for scalability have been reused in similar applications. Each question can have
associated concrete measures to be collected in order to answer the question and
assess the achievement of the goal specified for improving the reusability of design
decisions.
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The operational tasks of the architecture knowledge management task model are
related to the tasks required to identify, capture, and manage the knowledge required
to support the software architecture process. The following paragraphs provide a
general description of each of these tasks and how each of them can support the
management of architectural knowledge:

Architectural knowledge identification intends to determine the types and sources
of knowledge that is available in a certain context and important to achieve the
strategic goals of architecture design knowledge management. For example, sources
of architecture design knowledge may be humans (such as architects, and design-
ers) and non-humans (such as design patterns, case studies, and software design
documents). We have already identified several kinds of architectural knowledge
consumed or produced in the software architecture process along with the sources
of the knowledge in Sect. 5.4. Other researchers have also identified different kinds
of architectural knowledge and its consumers and producers which have been or-
ganized into Use Case Models of architecture knowledge management [192]. Both
of these sources have identified main kinds of architectural knowledge that needs
to be acquired and managed for supporting the software architecture process as we
describe in the following paragraphs.

Architectural knowledge acquisition is required to elicit the architectural knowledge
from the sources of the knowledge determined as part of the previously described
task. This is particularly important for implicit architectural knowledge. If the source
of the implicit knowledge is humans then the performance of this task should take
into account the socio-psychological aspects of gathering knowledge from humans,
as human sources may not necessarily be motivated to give away their knowledge.
There are several kinds of approaches, developed in the sociological and psycholog-
ical disciplines, which can be exploited to acquire knowledge from human sources.
We have enlisted several of such knowledge acquisitions techniques (such as inter-
views, brainstorming, repertory grid, protocol analysis, and Delphi technique) along
with their respective advantages and disadvantages in [10]. For acquiring knowledge
from literature and case studies, we have developed an architectural knowledge ac-
quisition approach, call pattern mining [11]. We have demonstrated that this is very
promising approach that can help organizations to distill great amount of knowledge
from literature with relatively less amount of effort and time.

Architectural knowledge development purports to package, consolidate, and en-
hance the available architectural knowledge. This task is usually achieved through
communicating the knowledge, integrating knowledge from different sources, and
representing it in a certain format. For example, software architecture community
has proposed several templates to organize and present architectural knowledge in a
format that is considered succinct and able to represent the captured knowledge at a
suitable abstraction level [2, 9]. The architectural knowledge development task can
also exploit the concepts provided by the Experience Factory approach to improving
software quality [32]. According to this approach, a separate business unit is respon-
sible for identifying, acquiring, and repackaging reusable knowledge for improving
the software quality by reusing knowledge and experience. We have also proposed



www.manaraa.com

5 Supporting the Software Architecture Process with Knowledge Management 85

similar approach to reusing architectural knowledge [9]. However, we do not rec-
ommend a separate business unit responsible for this task. Rather, we embed such
task in the process of acquiring, managing, and reusing architectural knowledge.

Architectural knowledge distribution supports the distribution of knowledge to the
relevant consumers in a relevant context. Acquired and developed knowledge needs
to be distributed to those who need it. There can be several ways of distributing
knowledge. Organizations need to identify, develop, and deploy the most effec-
tive and efficient mechanisms of distributing the knowledge. Researchers have
developed approaches and tools for delivering context-aware knowledge to the de-
velopers [341], however, there is hardly any approach developed for delivering
context-aware architectural knowledge to people working at the higher (i.e., archi-
tectural level) or lower (i.e., code level) levels of abstraction. Currently, this task
is usually supported by knowledge management technologies, such as data reposi-
tories, various search mechanisms and web-based delivery channels. For example,
we have developed a Web-based tool, PAKME (Sect. 6.4.2), to distribute architec-
tural knowledge to collocated and distributed teams of software developers. EAGLE
(Sect. 6.4.1) is another architecture knowledge management portal for improving
architectural knowledge sharing. EAGLE supports the distribution of architectural
knowledge by enabling stakeholders to connect to their colleagues or other involved
stakeholders by retrieving “who is doing what” and “who knows what”.

Architectural knowledge use aims at improving the return on investment made in
the knowledge management initiatives. It is commonly known that even if knowl-
edge is effectively acquired and efficiently distributed, there is no guarantee that the
knowledge would also be used optimally. A successful performance of this task may
require several incentives to increase the use of the knowledge, so organizational re-
sources can be optimized by improving the use/reuse of the available knowledge.
Moreover, people need to be trained in using/reusing available knowledge instead
of inventing the wheel. Organizations need to define and deploy new processes in
order to improve the reuse of the currently available knowledge. However, these
processes need to be seamlessly integrated in the existing software development pro-
cesses and activities, otherwise, people would reject new processes. We argue that
software architects and designers are usually quite eager to reuse available knowl-
edge in designing new systems as it is evident from the popularity of using design
patterns, which are reusable knowledge of potential solutions to recurring problems.
However, there should be sufficient training at the individual level as well at the team
level to improve the reuse of architectural knowledge in an organization.

Architectural knowledge preservation intends to prevent uncontrolled loss of archi-
tectural knowledge. This task includes selection and storage of new knowledge as
well as adaptation of existing knowledge (including controlled deletion). This sup-
ports one of the key factors to motivate the use, namely that the knowledge is kept
updated. If knowledge is not kept updated or preserved, it tends to either loose its
value for the potential users or disappears as people forget or move on other projects
or jobs. Hence, there is a vital need to have appropriate processes and techniques
to support this task of preserving architectural knowledge and keeping it updated.
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Many of the current approaches to managing architectural knowledge recently pro-
posed have been developed with the motivation of stemming the vaporization of
architectural knowledge and preserving it along with other architectural artifacts in
order to support the maintenance and evolution of software architecture.

5.7 Summary

This chapter aims to explain how the software architecture process can be sup-
ported by knowledge management. We have discussed different challenges caused
by the lack of appropriate knowledge management support in the software archi-
tecture process. We have also identified the activities and tasks that need to be
undertaken in order to manage the knowledge that is either consumed or produced
during the software architecture process. To help provide appropriate mechanism of
managing architectural knowledge, this chapter first identifies the knowledge that
is relevant to the different phases of an architecture lifecycle. We have identified
the knowledge needs of different stakeholders involved in the activities of the soft-
ware architecture process. A meta-model has been presented that can help organize
the architectural knowledge consumed or produced. This meta-model can be tai-
lored to provide appropriate tooling support for managing architectural knowledge.
Then, we have presented a task model of managing architectural knowledge. This
task model identifies two strategic level and six operational level tasks that need to
be performed in order to provide an integrated support mechanism for managing
architectural knowledge. We have also explained the different approaches and mea-
sures that are required to perform each of the tasks of the architecture knowledge
management task model.

We assert that the architecture knowledge management task model shown in
Fig. 5.4 coupled with the theoretical concepts and practical approaches provided
by different knowledge management school of thoughts as described in Chap. 1 and
available tooling support as described in Chap. 6 can provide sufficient guidance,
a framework and tools to provide knowledge management support throughout the
lifecycle of a software architecture as shown in Fig. 5.1 following the software archi-
tecture process shown in Fig. 5.2. Moreover, the presented meta-model of Fig. 5.3
shows how to organize the knowledge needed by different stakeholders in order to
benefit from or perform different tasks of the architecture knowledge management
task model presented in this chapter.
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Architecture knowledge management is crucial in modern organizations acting in
increasingly complex, dynamic and distributed IT markets. To remain competitive
and create new opportunities, software professionals must be able to effectively
manage the knowledge created during software architecting. As the size, scope and
complexity of systems increase, more stakeholders need to be efficiently involved,
both within the same organization and across different enterprises linked by various
types of business relationships. Efficient involvement requires appropriate tools and
techniques.

This part gives an overview of the tools and technological approaches that ei-
ther explicitly or implicitly offer solutions for managing architectural knowledge.
It addresses the problem of supporting architecture knowledge management from a
technological and organizational perspective. Key questions discussed in this Part
include: Who should use an architecture knowledge management tool? For what
purposes? To what extent do current tools and technological approaches support
architecture knowledge management? How can we support on-line architectural
communities in modern organizations?

In answering these questions, the objectives of Part II are to explain what are
the typical use cases characterizing architecture knowledge management, which use
cases are supported by existing tools, and how the existing technologies can support
the establishment and the management of on-line social networks and communities
aimed at knowledge sharing in business contexts. This Part provides material for
reflection to both researchers and practitioners about what already exists, and the
related opportunities and future challenges.

Chapter 6 describes a number of use cases for architecture knowledge manage-
ment tooling extracted and elaborated from both academic and industrial work.
These support actors to consume, produce and maintain architecture knowledge, as
well as to provide intelligent support for automating architecture knowledge man-
agement tasks. Peng Liang and Paris Avgeriou discuss nine tools on their support for
knowledge types and management strategies, and emphasize their special focus with
respect to more general architecture knowledge management features. A number of
loose technologies and mechanisms are also discussed by indicating their possible
contributions to the use cases.

While Chap. 6 looks at the tools and technologies offered to individuals for their
everyday work, Chap. 7 provides a broader perspective on the technologies that
can organize such individuals (and their preferred tools) into social networks and
on-line communities aimed at knowledge sharing. This Chapter focuses on the dis-
tributed nature of managing architectural knowledge and the need for organizations
to offer the best fitting networking platforms to support their employees in collabo-
rating on-line and acting as social, knowledge communities. Patricia Lago explains
peer-to-peer network models, Business Grids and Semantic Web as technological
approaches for sharing architectural knowledge within and across organizations;
Web 2.0 as new paradigm bringing innovation and openness in the way knowledge
is shared on the Web, and Wiki’s as a promising technology thereof. A refer-
ence framework of relevant architecture knowledge management aspects is used
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to compare and contrast the various approaches. In doing so, their potentials and
combinations are highlighted and exemplified.

These chapters use many of the concepts defined in Part I and discuss the techno-
logical and organizational contexts exploited in various industrial practices reported
in Part III.
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Chapter 6
Tools and Technologies for Architecture
Knowledge Management

Peng Liang and Paris Avgeriou

Abstract As management of architectural knowledge becomes vital for improv-
ing an organization’s architectural capabilities, support for (semi-) automating this
management is required. There exist already several tools that specialize in architec-
ture knowledge management, as well as generic technologies that can potentially be
used for this purpose. Both tools and technologies cover a wide number of potential
use cases for architecture knowledge management. In this chapter, we survey the
existing tool support and related technologies for different architecture knowledge
management strategies, and present them according to the use cases they offer.

6.1 Introduction

Architecting is a multifaceted technical process, involving complex knowledge-
intensive tasks [195]. The knowledge that is both produced and consumed during the
architecting activities is voluminous, broad, complex, and evolving and thus cannot
be manually managed by the architect. Furthermore, such architectural knowledge
(AK) [193] needs to be shared and reused among a number of different stakeholders,
and across a number of the lifecycle phases. Especially as the size and complexity
of systems increase, more stakeholders need to get efficiently involved in the archi-
tecting process and the knowledge management issues become quite challenging.
The problem is exacerbated in the context of multi-site or global software devel-
opment [75]. Finally the industry has also come to realize the need for efficient
inter-organization AK sharing [76].

Therefore, the management of AK needs to be automated or semi-automated by
appropriate tool support. This can be achieved similarly to traditional knowledge
management tool support, by emphasizing the characteristics of software architect-
ing. For example, tool support for architecture knowledge management (AKM) may
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concern enforcing an architecting process, reusing architecting best practices, docu-
menting architecture decisions, providing traceability between design artifacts, and
recalling past decisions and their rationale. AKM tools can support a wide number
of use cases, thus reducing the complexity of knowledge management in the archi-
tecting process and facilitating the knowledge-based collaboration of the involved
stakeholders.

In knowledge management, a distinction is often made between two types of
knowledge: implicit and explicit knowledge [234]; see also Chap. 4. Implicit (or
tacit) knowledge is knowledge residing in people’s heads, whereas explicit knowl-
edge is knowledge which has been codified in some form (e.g. a document, or a
model). Two forms of explicit knowledge can be discerned: documented and for-
mal knowledge. Documented knowledge is explicit knowledge which is expressed
in natural language or images in documents. Typical examples of documented AK
are Word and Excel documents that contain architecture description and analysis
models. Formal knowledge is explicit knowledge codified using a formal language
or model of which the exact semantics are defined. Typical examples of formal AK
models include AK ontologies [190] or AK domain models [10, 44, 325] that for-
mally define concepts and relations, and aim at providing a common language for
unambiguous interpretation by stakeholders. Organizations can employ three dis-
tinct strategies for managing their knowledge: codification, personalization [7, 143],
and the hybrid strategy which combines the previous two [92]; see also Chap. 1. Fig-
ure 6.1 presents these different knowledge types in the vertical dimension combined
with two knowledge management strategies in the horizontal dimension.

In this chapter, we first present a set of possible use cases that can be supported
by AKM tooling. The set is not meant to be exhaustive; however it is well-grounded
as it comprises a superset of the use cases either implemented or being in the
wish-list of the existing AKM tools. In Sects. 6.2 and 6.3, we present existing tool
support for the codification and hybrid knowledge management strategies, respec-
tively. To the best of our knowledge there are no tools that support purely the

Personalization Strategy Codification Strategy

Type of
Knowledge

Formal
Formal

Documented Documented

Tacit Tacit

Quantity of knowledge within an
organization

Quantity of knowledge within an
organization

Explicit

Implicit

Explicit

Implicit

Fig. 6.1 Pyramid of knowledge types and the associated knowledge management strategies [159]
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personalization strategy without any codification. However we will present some
technologies for personalization in Sect. 6.5. Some of the technologies are mature
and can be used off-the-shelf while others are still applied in an experimental setting
and are presented here as a future research challenge.

6.2 Use Cases of AK Management

In this section, we describe use cases for AKM tooling to present the potential set of
tool features in this domain and also set the stage for presenting existing tools and
technologies (discussed in Sects. 6.3–6.5). The use cases define the requirements for
developing an AKM tool, i.e. who would use it (actors), to do what (use cases)? We
came up with this use case model by surveying a series of papers [10, 113, 192, 326],
which provide at least some kind of usage of AK (requirements, services, functions,
use cases, etc.). We formed a superset of use cases by selecting, merging, and gen-
eralizing from the use cases of the individual approaches. Some of them came from
interviews with practicing architects, while others originate from researchers’ expe-
rience. Furthermore some use cases have been implemented in tools, while others
remained in the “wish-list” of researchers.

6.2.1 Actors

Who would use the AKM tool?

• Architects designing a system (or a subsystem of a large system) by making de-
cisions. They keep the tacit AK in mind or transform it from tacit to documented
or formalized knowledge [326].

• Reviewers involved in judging the quality or progress of an architecture [192].
• Requirements engineers who view AK from the problem space [192]. Developers

involved in the implementation of the architecture design and decisions [326].
• Maintainers who evolve or maintain the system and need to understand the

correlation between the decisions they take and existing, relevant AK [326].
• Users of the AKM tool are the entire set of system stakeholders [192]. All the

actors mentioned above are specialized actors of User.

6.2.2 Use Cases

We present the use cases (UC) by grouping them into four distinct categories, as il-
lustrated in Fig. 6.2: Actors either consume AK by using it for specific purposes, or
produce AK by creating new or modifying existing AK [195]; knowledge manage-
ment concerns general low-level functionality to manage AK data; and intelligent
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Fig. 6.2 Panorama of the AKM use case model

support concerns automating AKM tasks within the architecting process that require
either rigor or intelligence.

We do not claim that the list of use cases is exhaustive, but they do cap-
ture all use cases in the surveyed literature. Some use cases are kept unchanged
from the original source (e.g. Assess design maturity [326]) while others have
been merged (e.g. Reuse AK [326] includes Clone AK [192] and Stimulate reuse
of best practices [113]), or generalized (e.g. Identify stakeholders is generalized
from Identify the subversive stakeholder [192] and Identify affected stakeholders
on change [326]). These use cases, together with their included and specialized
use cases, are discussed within the presentation of the AKM tools in Sects. 6.3 and
6.4. In this section, we very briefly discuss each use case, and refer to the origi-
nal sources for more information. It is noted that the actors are explicitly specified
only for the use cases whose actor is the Architect or the Reviewer and not the
generic User. Also we consider the generalization relationship between use cases
as in [40].
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Consuming AK

• UC1, Learn AK [313]: learn and comprehend the AK, e.g. understand the ratio-
nale of a design decision.

• UC2, View AK and their relationships [196]: view both AK elements and re-
lationships e.g. the architectural decisions made and the relationships between
these decisions.

• UC3, Trace AK [12]: trace between various AK elements, e.g. design decisions,
rationale, and design.

• UC4, Share AK [313]: share knowledge with one or more actors of the system.
• UC5, Identify stakeholder [192, 326]: the architect identifies a stakeholder ac-

cording to certain criteria, e.g. who has the most “weight” on the architectural
decisions.

Producing AK

• UC6, Apply general AK [313]: use application-independent AK, e.g. apply archi-
tecture patterns to solve the problems at hand.

• UC7, Reuse AK [326]: the architect reuses AK in another project context, e.g.
reusing architectural design decisions from an old to a new project.

• UC8, Elicit/Capture AK [10, 196]: elicit and capture AK from various resources,
e.g. individuals, teams, or documents.

• UC9, Distill AK [313]: distill specific knowledge from a system into general
knowledge (e.g. architecture pattern) that can be reused in future systems.

• UC10, Integrate AK [313]: integrate different types of information into con-
crete AK, e.g. integrate stakeholder requirements, system context, and technology
constraints into system requirements.

• UC11, Synthesize AK [313]: the architect applies the design decisions and pro-
duces the system design (e.g. components and connectors).

• UC12, Translate AK [208]: translate the formal AK based on a given AK domain
model into another domain model to facilitate reuse.

• UC13, Recover architectural decisions [326]: the architect reconstructs decisions
with their associated rationale from an existing or 3rd party system.

• UC14, Evaluate AK [313, 326]: the reviewer performs a critical evaluation of the
AK, e.g. to make sure that requirements have been satisfied in the architecture
design.

• UC15, Conduct a trade-off analysis [326]: analyze the architecture by trading off
different quality attributes.

Knowledge Management

• UC16, Add/Store AK [192]: add and store elements of AK into the knowledge
repository.

• UC17, Edit AK [10]: modify or delete AK elements in the repository.
• UC18, Search/Retrieve AK [196, 313]: search through the existing AK using

certain criteria (e.g. keywords and categories, etc.).
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• UC19, Notify user about AK changes [113]: subscribe to specific AK elements,
and subsequently get notified about changes to them.

• UC20, AK versioning [192]: create and manage different versions of the AK.

Intelligent Support

• UC21, Enrich AK (semi-) automatically [196]: generate AK content proactively,
e.g. automatically distilling and interpreting AK from text without the users’
intervention.

• UC22, Cleanup the architecture [326]: the architect makes sure that all the de-
pendencies of removed AK (e.g. the consequences of an architectural decision)
have been removed as well.

• UC23, Offer decision-making support [113, 196]: provide automated support
for the Architect in the process of making decisions, e.g. through well-founded
advices and guidelines.

• UC24, Assess design maturity [326]: the architect evaluates when the architecture
can be considered as finished, complete, and consistent, e.g. verify whether a
system conforming to the architecture can be made or bought.

6.3 Tool Support for Codification

In this section, we present the AKM tools that support the codification strategy by
discussing for each one: a brief introduction, how they support the use cases listed in
Sect. 6.2.2 (full or partial support) and their special focus (e.g. architecture design
support, evaluation support, etc.). The order of presenting the tools is organized
according to the type of knowledge they support: the SEI-ADWiki supports docu-
mented AKM; ADkwik and ADDSS support both documented and formal AKM;
and the rest support formal AKM.

6.3.1 SEI-ADWiki

This tool is a wiki-based collaborative environment for creating architecture docu-
mentation and is used by students in the Carnegie Mellon University Master of Soft-
ware Engineering program [26]. The tool is not named, so we call it SEI-ADWiki
for ease of reference within this chapter.

Supported Use Cases

6.3.1.1 View AK and their relationships (UC2): users can view the content of ar-
chitecture documents and relationships within that content (e.g. mapping
between architecture views) through a navigation bar.

6.3.1.2 Trace AK (UC3): users can create traceability between architectural artifacts
(documented AK represented in wiki pages) through hyperlinks.
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6.3.1.3 Share AK (UC4): users can share the content of architecture documents with
other users after saving the content in wiki pages.

6.3.1.4 Add/Store AK (UC16): users can add and save architectural artifacts in wiki
pages.

6.3.1.5 Edit AK (UC17): users can change and remove the content of architecture
document in wiki pages.

6.3.1.6 Search/Retrieve AK (UC18): users can use the search box on every wiki
page to search the entire wiki by keywords.

6.3.1.7 Notify user about the AK changes (UC19): users can opt to receive noti-
fication (e.g. by email) when a monitored wiki page (documented AK) is
modified by other users or when a new wiki page is created.

6.3.1.8 AK versioning (UC20): users can create different versions for the architec-
ture artifacts represented in wiki pages through the versioning function of
wiki.

6.3.1.9 View the change history of AK (includes UC20): users can view the change
history based on the versioned AK. The change history documents which
part of the architecture has been added or modified since the last review.
AK versioning produces versioned AK for viewing the AK change history,
therefore this UC includes UC20.

Special Focus
SEI-ADWiki is able to create and maintain architecture documentation in a dy-
namic and collaborative way. The basic form of knowledge in SEI-ADWiki is the
wiki page (documented AK), which provides a combination of editing and version
management tools with the advantage of open access.

6.3.2 ADkwik

ADkwik1 (Architectural Decision Knowledge Wiki) is a Web 2.0 system which sup-
ports the collaborative decision-making work of software architects [291]. Similarly
to other wikis, the users (team members) only need a Web browser to work with the
system. But still ADkwik is different from a plain standard wiki which is explained
in details below. An elaborate application of ADkwik is discussed in Chap. 12.

Supported Use Cases

6.3.2.1 View AK (UC2): users can use the navigation bar to view the AK in a dy-
namic wiki page (e.g. all dependencies to an architectural decision) using
Web 2.0 context-aware mashup techniques [17].

6.3.2.2 Trace AK (UC3): users can create and manage dependency relationships
based on the SOAD architectural decision model [346].

1 www.alphaworks.ibm.com/tech/adkwik.
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6.3.2.3 Share AK (UC4): users can share AK across project boundaries with other
users. Special attention is given to architecture decisions, which are codified
in formal AK and shared according to the SOAD model.

6.3.2.4 Reuse AK (UC7): users can reuse the AK about enterprise application
architectures contained in the architectural decision repository.

6.3.2.5 Harvest AK (generalized UC from UC8 and UC9): users can update the
AK with new decisions, experiences, patterns and rationale gathered by
both successful and failed projects. This UC concerns eliciting/capturing
AK (e.g. decisions) and distilling AK (e.g. patterns) and, therefore it is a
generalized UC from UC8 and UC9.

6.3.2.6 Search/Retrieve AK (UC18): users can search/retrieve the AK from the
tagged wiki pages.

6.3.2.7 AK versioning (UC20): users can manage different versions of the AK by
tracing the wiki changes at the page level.

6.3.2.8 Offer decision-making support (UC23): users can find and reuse appropriate
decisions in the architectural decision repository.

Special Focus
The main difference of ADkwik from other wikis is that ADkwik is an applica-
tion wiki as opposed to a plain standard wiki. It is supported by relational database
underneath whose tables are structured based on the SOAD domain model [346],
while standard wikis also have databases, but the tables are wiki pages. The AK in
ADkwik is also structured according to SOAD model to enable formal AK shar-
ing between stakeholders and projects. Consequently ADkwik combines the open
access of wikis and formal knowledge based on the underneath domain model to
provide efficient AK sharing and management.

6.3.3 ADDSS

ADDSS2 (architecture design decision support system) is a Web-based tool for
storing, managing and documenting architectural design decisions taken during the
architecting process and providing traceability between requirements and architec-
tures through the decisions [67].

Supported Use Cases

6.3.3.1 Learn AK (UC1): users can understand the architectural decisions by view-
ing and replaying the evolution of decisions over time.

6.3.3.2 View AK and their relationships (UC2): users can easily view the AK
and their relationships presented in Web pages and structured according to
specific templates.

2 http://triana.escet.urjc.es/ADDSS.
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6.3.3.3 Trace AK (UC3): users can trace architectural decisions to other elements
(e.g. Architecture, Stakeholder) based on the ADDSS architectural decision
domain model.

6.3.3.4 Share AK (UC4): users can interact and share AK through groupware sup-
port in order to check and solve their conflicts. Another solution to share
AK in ADDSS is to generate standard documents (e.g. PDF) with all the
architectural information, and send it to related stakeholders.

6.3.3.5 Elicit/Capture AK (UC8): users can capture the architectural design deci-
sions using a template that consists of mandatory and optional attributes.

6.3.3.6 Chronological view of AK (included in UC2): users can view the archi-
tectural decisions in a chronological order, to better understand the decision
making process. This is a special case of viewing AK and their relationships
and, therefore it is an included UC of UC2.

6.3.3.7 Add/Store AK (UC16): users can add/store architectural design decisions or
design patterns and architectural styles. Decisions can be described using
free text, and patterns/styles can be described using graphical and textual
description.

6.3.3.8 Search/Retrieve AK (UC18): users can query the system about related
requirements, decisions and architectures.

6.3.3.9 Offer decision-making support (UC23): users can make design decisions by
selecting well-known design patterns and architectural styles.

Special Focus
ADDSS uses a flexible approach based on a set of mandatory and optional attributes
for characterizing architectural design decisions. Hence, ADDSS provides a cus-
tomizable codification strategy that makes capturing AK more flexible. ADDSS
focuses on the evolution of AK by capturing both architecture designs and architec-
tural design decisions following an iterative process, and visualizing this evolution
over time. ADDSS also stresses on applying general knowledge (e.g. architectural
patterns).

6.3.4 Archium

The Archium3 [161, 163] aims at providing traceability among a wide range of AK
concepts such as requirements, decisions, architecture descriptions, and implemen-
tation. The tool facilitates the maintenance of this AK (e.g. resolve conflicts and
synchronize various parts) during the life cycle of a system. All these AK concepts
can be expressed in a single language: the Archium language.

Supported Use Cases

6.3.4.1 Trace AK (UC3): users can trace architectural decisions to requirements,
architectural models and implementation in the Archium language.

3 www.archium.net.
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6.3.4.2 Distill patterns of architectural decision dependencies (specialized of
UC9): users can discover general patterns of dependencies between archi-
tectural decisions by viewing their functional dependencies. The patterns
of architectural decision dependencies are a type of AK, so this is a
specialized UC of UC9.

6.3.4.3 Add/Store AK (UC16): users can add/store architectural decisions specified
in the Archium language into the repository.

6.3.4.4 Retrieve AK (included in UC18): users can manually select any component
or connector and retrieve the relevant architectural decisions.

6.3.4.5 Check superfluous architectural decisions (included in UC22): users can
identify one class of superfluous decisions in Archium: the unnecessary
decisions that have no effect on the architecture. Checking superfluous
architectural decisions is a prerequisite for cleaning up the architecture
and, therefore this UC is included in UC22. The same reason applies for
the next UC.

6.3.4.6 Get consequences of an architectural decision (included in UC22): users
can get the consequence of a decision by viewing the dependency graph of
architectural decisions.

6.3.4.7 Check for consistency of architectural decisions (included in UC24): users
can employ the Archium compiler and run-time environment supporting
the Archium language to check different types of consistency between ar-
chitectural decisions, design and implementation. For example, they can
check whether dependencies such as refines or dependsOn of an architec-
tural decision are satisfied with other decisions. Checking consistency of
architectural decisions is part of accessing design maturity and therefore
this is an included UC of UC24. The same reason applies for the UCs
6.3.4.8–6.3.4.10.

6.3.4.8 Validate architectural decisions against requirements (included in UC24):
users can check whether all requirements are addressed in one or more
architectural decisions based on the Archium language.

6.3.4.9 Check implementation against architectural decisions (included in UC24):
the Archium compiler generates code by transforming the architectural
elements (e.g. components, connectors) into Java classes. During the pro-
cess, the compiler also analyzes and verifies whether the transformed Java
classes comply with the architectural decisions.

6.3.4.10 Check for completeness (included in UC24): users can check whether
any elements (e.g. motivations, causes, and problems) of an architectural
decision are missing.

Special Focus
Visualization and traceability of architectural decisions are the core features of
Archium, which are essential for better understanding the architecture design.
Archium provides a pragmatic approach to using architectural decisions in architect-
ing: the decisions are bidirectionally linked with the system implementation through
transformations, which are transparent to user.
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6.3.5 AREL

AREL4 (Architecture Rationale and Elements Linkage) is a UML-based tool that
aims in creating and documenting architectural design with a focus on architectural
decisions and design rationale [316]. Three types of AK are captured in AREL:
design concerns, design decisions and design outcomes, which are all represented
in UML. An extensive example of the use of AREL in design reasoning is provided
in Chap. 9.

Supported Use Cases

6.3.5.1 Learn AK (UC1): users can understand the design outcome with its asso-
ciated design rationale (concern and decision) based on the AREL causal
model.

6.3.5.2 View AK (UC2): users can view the AK elements and relationships in UML
diagrams.

6.3.5.3 Trace AK (UC3): users can trace design concerns and design outcomes to
design decisions using the UML dependency relationship.

6.3.5.4 Identify AK change impacts (included in UC14): users can identify all the
design decisions and other AK elements, that are directly or indirectly im-
pacted when AK is modified, based on the AREL causal model. This UC
provides information for evaluating AK, e.g. evaluate the impact of AK
change, so this is an included UC of UC14.

6.3.5.5 Elicit/Capture AK (UC8): users can capture AK during the architecting
process using a UML modeling tool. They can also elicit AK from text-
based requirement specifications using UML models.

6.3.5.6 Synthesize AK (UC11): users can implement design decisions into the
system design in UML diagrams, based on the AREL domain model.

6.3.5.7 Conduct a trade-off analysis (UC15): cross-cutting concerns often re-
quire trade-off analysis at multiple decision points, and users can conduct
such an analysis by tracing between design concerns and design outcomes
that implement the cross-cutting concerns (especially the non-functional
requirements).

6.3.5.8 Add/Store AK (UC16): users can save the elicited/captured AK in UML
models.

6.3.5.9 Edit AK (UC17): users can edit the AK through the corresponding UML
models.

6.3.5.10 Search/Retrieve AK (UC18): users can use the search and retrieval func-
tions provided by the UML modeling to find AK elements within the UML
models.

6.3.5.11 Detect architecture design conflicts (included in UC24): users can detect
the design conflicts by looking at the missing links (design gaps) between
design concerns and design outcomes using the AREL causal model. This

4 www.ict.swin.edu.au/personal/atang/AREL-Tool.zip.



www.manaraa.com

102 P. Liang and P. Avgeriou

UC can be used for accessing design maturity and, therefore it is included
in UC24.

Special Focus
AREL represents various AK elements using UML profiles, thus integrate AKM
into a UML modeling tool (e.g. Enterprise Architect). This enables the architect
to record the design decisions as part of the architecture design. AREL focuses on
linking the problem space (design concerns) to the solution space (design outcomes)
through design decisions in a uniform way.

6.3.6 Knowledge Architect

The Knowledge Architect (KA) is a tool suite for capturing, using, translating,
sharing and managing AK. It is based on a common AK repository accessed by
different clients (Document Knowledge Client, Excel and Python Plug-in, Knowl-
edge Explorer and Knowledge Translator) [208]. The tool suite makes extensive use
of technologies developed for the Semantic Web to allow for formal AK manage-
ment. The Knowledge Architect is one outcome of the GRIFFIN project, discussed
in Chap. 8.

Supported Use Cases

6.3.6.1 View AK and their relationship (UC2): users can view the AK entities and
their relationships in the Knowledge Explorer.

6.3.6.2 Trace AK (UC3): users can create traceability between AK entities using
the different client tools.

6.3.6.3 Share AK (UC4): users can share AK entities with other users by storing it
centrally in the Knowledge Repository and accessing it using the various
client tools.

6.3.6.1 Elicit/Capture AK (UC8): users can elicit/capture AK by annotating archi-
tecture documents and models using the KA client tools.

6.3.6.5 Integrate AK (UC10): users can integrate various types of AK (from re-
quirements to design artifacts) into the Knowledge Repository based on a
common domain model.

6.3.6.6 Translate AK (UC12): users can perform automatic translation based on
different AK domain models through the Knowledge Translator [207].

6.3.6.7 Add/Store AK (UC16): users can save the captured (annotated) AK entities
into the Knowledge Repository through the client tools.

6.3.6.8 Edit AK (UC17): users can edit the AK entities through the client tools.
6.3.6.9 Search/Retrieve AK (UC18): users can query the AK entities and their re-

lationships in the Knowledge Repository through its Query Engine, using
the RDF query language.

6.3.6.10 Check completeness of AK (included in UC24): users can check the com-
pleteness of AK in a document (e.g. whether a Decision Topic has been
addressed by at least one Alternative) through the Document Knowledge
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Client. Checking completeness of AK is part of accessing design maturity,
so this is an included UC of UC24.

Special Focus
The Knowledge Architect focuses on capturing AK through annotating informa-
tion in different sources (e.g. Word, Excel documents), and sharing it in a central
repository. The tools suite also focuses on traceability management and intelligent
support, as AK entities and relationships are semantically specified in OWL [37].

6.3.7 SEURAT

SEURAT5 (Software Engineering Using RATionale system) is an Eclipse plug-in
that is targeted to rationale knowledge management in an integrated development
environment (IDE), from requirements to design and finally to source code [60][62].
The concept of rationale knowledge in SEURAT is composed of design decisions,
alternative solutions considered, and the reasons (arguments for each solution)
behind the final decisions.

Supported Use Cases

6.3.7.1 Learn AK (UC1): users can understand rationale knowledge and all its
parts. It is represented with a formal argument ontology (for details on the
argument ontology see [59]), which semantically assists the understanding
of the rationale knowledge.

6.3.7.2 View AK (UC2): users can view rationale knowledge within the Eclipse
environment in a hierarchical view – from list of decisions to alterna-
tive solutions and finally to the “arguments” for or against each solution.
Users can also view rationale knowledge through the rationale hierarchy
report (in the same layout as in the hierarchical view) and the rationale
traceability matrix report generated by the tool.

6.3.7.3 Trace AK (UC3): users can trace the rationale knowledge (e.g. “how do
we compare dates?”) to source code (e.g. function compareDates()) di-
rectly in the Eclipse environment using bookmarks. Users can also trace
requirements to the decisions made and captured in the rationale.

6.3.7.4 Elicit/Capture AK (UC8): users can capture rationale knowledge during
source code development. They can also import rationale knowledge from
Word documents where text has been annotated as rationale.

6.3.7.5 Decision evaluation and impact assessment (included in UC14): users can
evaluate decisions by calculating the “support score” for each alternative
solution based on the arguments for and against it. Users can also dis-
able some requirements when stakeholders change their mind about them,
and see which decisions may require re-examination due to the impact

5 www.users.muohio.edu/burgeje/SEURAT/Downloads.html.
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assessment of requirements. This UC aims at evaluating design decisions,
a type of AK, so this is an included UC of UC14.

6.3.7.6 Conduct a trade-off analysis (UC15): users can conduct trade-off analysis
of a decision based on the “background knowledge” (e.g. “A more flex-
ible solution costs more to develop”) of this decision which is explicitly
recorded in the rationale.

6.3.7.7 Add/Store AK (UC16): users can add rationale knowledge using an editing
interface integrated in Eclipse and store it in a relational database.

6.3.7.8 Edit AK (UC17): users can edit the text of rationale knowledge using the
editing interface.

6.3.7.9 Search/Retrieve AK (UC18): users can search/retrieve rationale knowl-
edge elements through keyword-based search, including requirements,
decisions, alternatives and arguments.

6.3.7.10 Offer decision-making support (UC23): users can get decision-making
support using the “support scores” for each alternative solution.

6.3.7.11 Check for completeness and consistency of rationale knowledge (included
in UC24): users can detect the incompleteness and inconsistency of the
rationale knowledge through inferencing based on the argument ontology,
e.g. for completeness, checks are made to ensure that there are alternatives
proposed for each decision. This UC can be used for accessing design
maturity and, therefore it is included in UC24.

Special Focus
SEURAT is not specifically used for the management of AK but for rationale knowl-
edge. However, in a broad sense, rationale knowledge about architecture design (e.g.
arguments linked from requirements to alternative design solutions) is an important
part of AK. In addition, SEURAT mainly focuses on the application of rationale
knowledge supporting software maintenance [61].

6.4 Tool Support for the Hybrid Strategy

In this section, we present the AKM tools that support the hybrid strategy in the
same structure as in Sect. 6.3.

6.4.1 EAGLE

EAGLE [114, 113] is an AK sharing portal that implements best practices from
knowledge management for improving AK sharing. The main features of EA-
GLE include integrated support for both codified and personalized AK, support
for stakeholder-specific content, and AK subscription and notification. EAGLE is
a result of the GRIFFIN project, discussed in Chap. 8.
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Supported Use Cases

6.4.1.1 Share AK (UC4): users can share AK in both personalized (e.g. news,
events and experience with colleagues) and codified (e.g. best practices,
documents) formats.

6.4.1.2 Find a colleague based on expertise or competence (included in UC4):
users can find the right person, whose personal knowledge may match a
specific AK request. This UC provides information for personalized AK
sharing, so it is an included UC of UC4.

6.4.1.3 Overview of personal information of colleagues (included in UC4): users
can get an overview of “who knows what” and “who is doing what” among
their colleagues. This UC also provides information for personalized AK
sharing, so it is an included UC of UC4.

6.4.1.4 Add/Store best practices (specialized of UC16): users can add best prac-
tices to a repository (codified AK) for reuse and decision making support.
Best practices are a special type of AK, so this is a specialized UC of
UC16.

6.4.1.5 Add/Store architecture document (specialized of UC16): users can add ar-
chitecture documents to a repository according to various AK categories.
Similarly to the UC in 5.1.4, this is also a specialized UC of UC16.

6.4.1.6 Search/Retrieve AK (UC18): users can access generic documentation (dif-
ferent types of company documents) by document title, keywords or
categories, and also search for project-specific AK documentation.

6.4.1.7 Search/Retrieve related AK (included in UC18): users can access exter-
nal information sources to find related AK, such as white papers (codified
AK), seminars and trainings (personalized AK) or other corporate commu-
nication, e.g. discussion board (personalized AK). Related AK is a special
kind of AK, so this is a specialized UC of UC18.

6.4.1.8 Notify user about new AK (specialized of UC19): user can stay up-to-date
about new AK through subscription and notification mechanisms. New AK
is a kind of AK change and, therefore this is a specialized UC of UC19.

6.4.1.9 Offer decision-making support (UC23): Users can get intelligent support
by answering a questionnaire during the decision-making process, and au-
tomatically receiving a number of architectural guidelines that match their
answers.

6.4.1.10 Overview of project stakeholders (included in UC24): users can have an
overview about project stakeholders, e.g. contact information and expertise
area. They can subsequently request all the involved stakeholders to access
the design maturity and, therefore this is an included UC of UC24.

Special Focus
EAGLE focuses on stakeholder collaboration during the architecting process, by
enabling them to connect to colleagues or other involved stakeholders by retrieving
“who is doing what” and “who knows what”. In addition, codified AK in a document
repository or best practice repository can also be easily accessed using advanced
search mechanisms.
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6.4.2 PAKME

PAKME6 (Process-based Architecture Knowledge Management Environment) is a
Web-based tool aimed at providing knowledge management support for the software
architecture process. PAKME supports both codification and personalization as it
not only provides access to AK but also identifies the knowledge source [8, 12].

Supported Use Cases

6.4.2.1 View AK and their relationships (UC2): users can view AK elements (e.g.
architectural patterns) in template-driven Web pages, and their relationships
through hyperlinks.

6.4.2.2 Trace AK (UC3): users can trace AK using hyperlinks and relationship types
(e.g. constrain or conflictWith relationships between architectural design
decisions) defined in PAKME.

6.4.2.3 Share AK (UC4): users can share the AK stored in the PAKME repository
through the Web user interface.

6.4.2.4 Apply general AK (UC6): users can apply general AK (e.g. patterns, general
scenarios) to design a suitable architecture for a new application.

6.4.2.5 Reuse AK (UC7): users can reuse alternative design solutions in 4 steps
(searching, retrieving, reviewing and integrating).

6.4.2.6 Elicit/Capture AK (UC8): users can use various Web forms based on tem-
plates (e.g. architectural decision and pattern templates) to elicit, structure
and capture AK before storing it into the repository.

6.4.2.7 Add/Store AK (UC16): users can use various Web forms to enter generic or
project-specific AK into the repository, including the knowledge producer
information.

6.4.2.8 Edit AK (UC17): users can modify and delete the AK stored in the reposi-
tory through the Web user interface.

6.4.2.9 Search/Retrieve AK (UC18): users can search/retrieve AK elements through
keyword-based search, advanced search and navigation-based search. For
personalization purposes the source of AK (e.g. knowledge producer) can
also be retrieved.

Special Focus
PAKME focuses on various collaborative AK management features for geograph-
ically distributed stakeholders involved in the architecture process by managing
and sharing codified AK (pattern, decision, etc.) and personalized AK (contact
management, online collaboration, etc).

6.5 Technologies

Some of the AKM tools described in the previous sections were not built from
scratch but made use of various technologies. Such technologies are generic and can
be employed to support the AKM use cases presented in Sect. 6.2. In this section, we

6 http://193.1.97.13:8080/.
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present a number of these technologies to demonstrate their value for AKM tools,
and to assist tool vendors in selecting the appropriate ones for their own needs. The
order of presenting the technologies is organized according to the type of knowl-
edge they support: Web portal, blog and wiki support the hybrid strategy, voting and
ranking support the personalization strategy, and the rest support the codification
strategy.

6.5.1 Web Portal

A Web portal [131, 319] is a Web site that provides integrated modules, like hosted
databases, yellow pages, discussion boards, news push, document management,
email and more. Web portals automatically personalize the content generated from
these modules to provide a personalized experience to users. The yellow pages mod-
ule can record the expertise area, involved projects and contact information of all the
architects in an organization, thus providing support for personalized AK sharing
(UC4). Emails, news push and discussion boards provide communication support
for AK sharing (UC4) through a collaboration space among users. News push also
supports AK changes notification (UC19) when personalized information is changed
(e.g. personnel movement).

This technology is also useful for codified AK management. The hosted cen-
tral databases and client/server architecture can facilitate AK sharing (UC4), and
Web forms can be used for tracing (UC3), eliciting/capturing (UC8), adding/storing
(UC16), and editing (UC17) AK.

6.5.2 Blog and Wiki

Different from yellow pages, blogs and wikis are both editable Web pages by indi-
vidual users who are distributed over the network. Blogs are for single users, and
wikis are designed to enable anyone to contribute or modify content, so they both
support personalized AK sharing (UC4). For example individual users can provide
up-to-date and more reliable personal information, such as their expertise area and
personal knowledge.

As a collaborative Web editing system, wikis also support codified AK manage-
ment for both documented and formal AK. We classify the wikis as general wikis
for documented AKM (e.g. SEI-ADWiki) and semantic wikis for formal AKM
(e.g. ADkwik). Both types of wikis can support the following AKM use cases:
AK viewing (UC2) and AK traceability (UC3), adding/storing AK (UC16), editing
AK (UC17), searching/retrieving AK (UC18), user notification about AK changes
(UC19), and AK sharing (UC4). Some practical experience of applying wikis to
support AK sharing can also be found in [116].
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Generic wikis simply document AK in the wiki pages. On the other hand, seman-
tic wikis provide semantic support through formal models (e.g. semantic annotation
and semantic query of AK). In addition, wikis have also been used in requirements
engineering to support requirements knowledge management in a codification strat-
egy, e.g. for documented requirements [91] and formal requirements knowledge
[212].

6.5.3 Voting and Ranking

Voting and ranking is a method to evaluate and rank the characteristics (e.g. cred-
ibility and reliability, etc.) of objects or people by different users in an online
community. It has been widely applied in many social networking systems (e.g.
LinkedIn) and C2C business platforms (e.g. eBay) for the evaluation and ranking of
personal information.

The personal information recorded in Web portals, wikis and yellow pages has
unavoidably personal and subjective bias (e.g. the expertise of an architect). Using
the voting and ranking mechanism can partially mitigate this problem, and provide
more credible personal information. For example ranking the expertise of different
stakeholders on a technology platform by other members of an organization helps to
create reliable “who knows what” information, and thus efficient personalized AK
sharing (UC4).

6.5.4 Natural Language Processing

Natural language processing (NLP) is concerned with the understanding of human
natural languages by computers. Since documentation in natural language is domi-
nant in AK resources (most documented AK is in natural language), it is beneficial
to introduce NLP techniques in AKM tools.

Several AKM use cases have been supported by NLP techniques. The LSA
(Latent Semantic Analysis) technique has been used to elicit/capture AK (UC8)
semi-automatically [45]. Text mining techniques have been used to enrich AK
(UC21) [114], and offer decision-making support (UC23) [196].

6.5.5 Ontologies

Ontologies are formal structures supporting knowledge representation, manage-
ment, sharing and reusing [120], and have been widely used in various fields, such
as the Semantic Web. They represent explicitly the semantics of structured and
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semi-structured information and so enable sophisticated automatic support for ac-
quiring, maintaining and accessing information [90]. Formal AK, as a kind of formal
knowledge, can be represented by ontology models (see for example [190]). Various
ontology techniques have been explored in AKM tools, including ontology model-
ing, ontology database, ontology mapping, and ontology-based inferencing. These
techniques will be elaborated in the following paragraphs.

Ontology modeling can be used to describe domain concepts and their relation-
ships. In this respect, AK ontology models are composed of AK domain concepts
(e.g. Design Decision, Alternative, and Risk) and relationships (e.g. addressedBy
and containedIn). Related standards on ontology specification to specify the ontol-
ogy modeling results have been defined by the W3C, e.g. RDF [184] and OWL [37],
with ontology modeling tools support, e.g. Protégé7. Combined with ontology mod-
els, an AKM tool can support the following use cases of formal AK management:
UC1 (Learn AK) - the ontology concepts and relationships can help users understand
the meaning of AK; UC2 (View AK and their relationships), UC3 (Trace AK) and
UC22 (Clean up architecture) - these use cases are supported by using the semantic
relationships defined between AK concepts.

Ontology databases store data in ontological data models. For example the RDF
store Sesame [53] stores data in the RDF triple format. Ontology databases provide
semantic querying using their specific query language, e.g. SPARQL [258] of the
W3C, SeRQL for Sesame. For example, one can query the ontology database by
posing question like “Tell me all the alternative solutions addressed to decision topic
’the control method over the data processing pipelines’ which are not in conflict
with each other”. The following use cases can be supported by ontology databases
in formal AK management tools: Add/Store AK (UC16) in ontological data models,
Search/Retrieve AK (UC18) by query languages, and Share AK (UC4) after getting
the query results.

Ontology mapping is an activity to semantically relate two ontologies [112]. It
provides a semantic translation between heterogeneous ontologies and therefore en-
ables knowledge sharing in a semantically sound manner [169]. This is essential for
sharing AK that originates from different organizations and is based on different
AK ontologies. UC4 (Share AK) and UC12 (Translate AK) can be supported by
ontology mapping techniques (see e.g. the Knowledge Translator [208]).

Ontology-based inferencing concerns retrieving knowledge and creating deduc-
tive knowledge based on ontology models with logic-based reasoning [333]. In
AKM tools, the inferencer can be mostly used to automatically infer the relation-
ships that exist between the formal AK entities, e.g. an inverse relationship between
AK elements (for traceability) or a mapping relationship between elements from
different AK domain models (for translation). The inferencer can support the fol-
lowing use cases: Search/Retrieve AK (UC18) e.g. by the SeRQL query language
of OWLIM inference engine [181], Check for completeness (included in UC24)
e.g. by the KA client tools [208], and Translate AK (UC12) e.g. by the Knowledge
Translator [208].

7 http://protege.stanford.edu/.
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6.5.6 Plug-in

A plug-in consists of a program that connects and interacts with a host system (e.g.
a Web browser or an email client) to provide a specific function on demand. This
technology is quite beneficial for promoting AK usage through tools that archi-
tects have being working and are familiar with. Typical tools that architects use
through the architecting process include word processors for architecture documen-
tation, spreadsheets for quantitative architecture evaluation and UML modelers for
architecture design.

Examples of the tool plug-in technology include the KA Document Knowledge
Client (Word plug-in) and AREL (UML modeling tool plug-in). Both plug-ins sup-
port the following AKM use cases: Learn AK (UC1), View AK (UC2), Trace AK
(UC3), Elicit/Capture AK (UC8), Synthesize AK (UC11), Add/Store AK (UC16)
and Edit AK (UC17).

6.5.7 Version Management

This technology concerns the management of multiple revisions of the same unit of
information. The versioning function of wikis, SVN (Subversion) and CVS (Con-
current Versions System) are typical examples of this technology. Wikis can track
the version changes at the page level. For every page, it is easy to look up earlier
versions, display the differences between two versions, and revert to an older ver-
sion. SVN and CVS provide similar functions for the version management of files
which can be used to record documented AK (e.g. Word documents) and also for-
mal AK (e.g. RDF files). AK evolves rapidly during the architecting process, and
effective version management of AK can support directly AK versioning (UC20)
and indirectly viewing the change history of AK (includes UC20).

6.5.8 Web 2.0

Web 2.0 aims to enhance creativity, information sharing, collaboration and func-
tionality of the Web. Interesting techniques in Web 2.0 for codified AKM include
push and pull mechanisms, tags and context-aware mashups. Push and pull mecha-
nisms (e.g. RSS – Rich Site Summary) can be used to notify user about AK changes
(UC19) for subscribed users [114]. Tags can be used to search/retrieve AK (UC18)
for Web pages that have been tagged. Context-aware mashups can be used to view
AK and their relationships (UC2) e.g. all the inter-dependent elements of an archi-
tectural decision can be shown in a dynamic mashup Web page, which combines the
AK elements from more than one source into a single integrated Web page [17].
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6.6 Summary

For the effective usage of AK in the architecting activities, the AKM tools have
been recognized as a great contribution [7]. In this chapter, we provide a survey of
current tools and technologies with respect to the AKM strategies they adopt and the
use cases they support. We hope to help AKM tool developers in understanding the
state-of-the art and practice and get inspired in building their own tools. We expect
that depending on their specific needs and organizational context, they will mix and
match the appropriate technologies and ideas from existing tools, in order to build
customized AKM tools. We are confident that, as more AKM tools are built, more
AK will be used in practice and shared among organizations and thus contribute to
establishing AKM in the daily organizational practices.

It is noted that the following use cases, identified in Sect. 6.2, have not been
fully supported (implemented) by existing AKM tools: UC5 (Identify stakeholder),
UC11 (Synthesize AK), UC13 (Recover architectural decisions), UC14 (Evaluate
AK), UC21 (Enrich AK (semi-) automatically), and UC24 (Assess design maturity).
We regard these use cases as the future challenges, which AKM tool developers
can work on to provide more added value to existing AKM. We also believe that
some promising technologies can be the key for implementing these use cases,
such as NLP for intelligent support (advices and guidelines for making decisions)
[196], context-aware text mining for the elicitation of user interests about AK, and
ontology inferencing for the enrichment of AK.
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Chapter 7
Establishing and Managing Knowledge Sharing
Networks

Patricia Lago

Abstract This chapter gives an overview of the approaches supporting the estab-
lishment and the management of social networks aimed at knowledge sharing. We
identify two approaches. The first approach is made of networks driven by tech-
nologies and potentially providing support for architecture knowledge management,
like grid computing and peer-to-peer technologies. These were initially meant for
implementing very specific and low level services; nowadays they cover broader
spectra like knowledge management in a distributed setting and knowledge grids.
The second approach is made of networks autonomously created from already ex-
isting social communities. These are further enabled by Web 2.0 technologies and
services.

The chapter describes the approaches and their inter-relations, and it highlights
the needs for architecture knowledge management they can potentially support.
An overview of some widely known approaches in the current practice further
emphasizes which potential architecture knowledge management needs have been
actually fulfilled. In this way, we illustrate what has been already experimented
with, and what are the architecture knowledge management needs requiring further
investigation.

7.1 Introduction

Software developers are knowledge workers. They take decisions on design issues,
apply patterns, negotiate solutions, and so on. These software developers usually
do not operate in a vacuum, but are part of one or more social networks, commu-
nities of people they interact with. Such a social network may consist of just the
members of the current project, a circle of experts in a specific area, the members of
a standardization body, etc.
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Social networks can be supported by tools that facilitate communication, sharing,
and exchange of information. For instance, a software architect searching for infor-
mation on security on the company’s intranet may be pointed to colleagues having
experience in that area. The focus of this chapter is the characterization of solutions
supporting the establishment of such social networks of professionals.

We recognize two main approaches behind such networking platforms. The first
approach focuses on the creation of platform technologies to inter-connect sites
that are geographically distributed. Such platforms initially supported very basic
applications, like CPU optimization, distributed data processing, database dupli-
cation/distribution. In a second stage they evolved to support broader, more user-
centric applications for specific domains, like enterprise virtual workspaces/offices,
e-shopping, entertainment and gaming, collaborative software development, and
tele-teaching. Examples of this first type of approach include peer-to-peer net-
works and grids. This approach is bottom-up, in that it started with implementing
the lower-level technology, and thereafter evolved to support broader, higher-level
applications.

The second approach started with pre-existing communities of people and orga-
nizations, autonomously created to share common interests and problems, and to
deepen their knowledge and expertise in some areas. In a second stage, such com-
munities discovered that the Web, and the recent Web 2.0 technologies, could serve
very well in facilitating community interaction and knowledge sharing. Examples
of this second type of approach include social networks (addressing both leisure
and professional networking) and wiki’s (addressing mainly knowledge communi-
ties within organizations). This second approach is top-down, in that it started with
existing communities and their needs, and thereafter evolved to make use of the
right technologies to support them.

Both approaches do not have a specific application objective in mind and can be
used for a potentially wide range of applications, including architecture knowledge
management on networks of software architects, or more generally communities
of practice in the field of software architecting. Therefore, after describing the
approaches as is, we analyze their suitability for use in architecture knowledge
management (AKM). We use both characteristics of AKM (type of architectural
knowledge to be shared and AKM strategies) as well as characteristics of the net-
working approaches (dynamism, support for knowledge description, support for
knowledge discovery), and discuss the extent to which they can support AKM. This
can be a starting point to decide on the selection of the right platforms for setting up
an AKM network in a given context.

7.2 From Networking Platforms to Knowledge Communities

7.2.1 Networking Platforms

Architecture Knowledge Management is distributed in nature. Independent from the
type and location of the participating sites, people and resources, AKM generally
requires the contribution of multiple persons to a common body of knowledge.
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People can always use architectural knowledge in isolation. For instance, share
their own expertise, but also consume knowledge from a shared knowledge pool.
However, when looking at the big picture, a body of knowledge is always the result
of multiple contributors; it evolves thanks to active consuming and incremental re-
finement; it implies motivation and shared interests; it should represent a real added
value to individuals and/or organizations.

To achieve the characteristics mentioned above, AKM needs the support of some
kind of networking platform, i.e. a framework enabling and supporting people and
systems to carry out activities on a network (typically the Internet). A network is
often identified with physical computer network, i.e. a group of computers inter-
connected via a physical network. In modern times, however, platforms also (and
especially) support the creation and management of virtual social networks, i.e. so-
cial structures of nodes (typically individuals or enterprises) hiding the details of
the underlying physical network and tied together by higher level relations, such as
values, friendship, vision; but also business, profession and expertise.

With this differentiation in mind, we can decouple a physical computer network
from a virtual social network. As an example, Fig. 7.1 shows an enterprise organized
in two branches (Branch A and Branch B): in each branch there is a virtual group
made of three member nodes. This example can be visualized as a virtual social
network (upper part of the figure), which hides the details of the underlying physical
computer network (in the lower part of the figure). In this chapter we specifically
focus on the upper part, the virtual social network. We discuss how peer-to-peer
networks, Grids and the Semantic Web can support social networking in the specific
context of AKM. To this end, we first explain the AKM characteristics we use for
discussion.

Fig. 7.1 Social and computer networks
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Table 7.1 AKM aspects

AKM aspect Examples Further info

AK type Tacit, explicit Chap. 1
AKM strategy Personalization, codification, hybrid Chap. 1
KM school Technocratic, behavioral, . . . Chap. 4

7.2.1.1 AKM Characteristics

To discuss the suitability of the different networking platforms for AKM we use the
AKM aspects summarized in Table 7.1.

By supporting the flow (and not necessarily the storage) of information on a
network, a personalization strategy aims at sharing tacit knowledge among partici-
pants. A codification strategy, instead, helps in systematizing, storing and making
available explicit knowledge. A hybrid strategy looks for the right balance between
personalization and codification, and therefore the right mix of tacit and explicit AK.

Moreover, as we focus on networking platforms, two of the three knowledge
management schools discussed in Chap. 4 can be applied: the technocratic school
focusing on systems for knowledge codification and personalization, and the or-
ganizational school focusing on models for orchestrating knowledge sharing in
communities and enterprises.

AK types, AKM strategies and KM schools will be used to discuss the AKM
support provided by the different types of networking platforms.

7.2.1.2 Peer-to-Peer Networks

A peer-to-peer (P2P) network is a social network of participating nodes (peers) act-
ing as both clients and servers to other peers. The concept of P2P is based on the
philosophy that every user in the network must share: “the more one shares, the
more one gets”. Accordingly, one peer sharing a lot of resources can gain e.g. more
privileges and faster access to contents and resources. By following this philosophy,
availability of the resources is automatically assured, which makes possible the sub-
sistence of the network itself. The users not following such a philosophy are known
as leechers; they are a hazard to the community, and should be avoided.

One of the most powerful advantages of P2P lies in the dynamic and potentially
infinite capabilities of the underlying computer network. Instead of centralizing
bandwidth, storage and computing power in a pre-defined network configuration,
P2P relies on the capabilities of its participants, which are hence both consumers of
the shared resources, and hosts. Therefore, when nodes join the network and request
resources, the totality of resources in the system increases as well. That makes P2P
different from e.g. a client–server platform with a fixed number of servers, in which
the addition of clients implies lower data transfer speed for all users. Furthermore,
the distributed and dynamic nature of the P2P network increases robustness against
failures, thanks to data replication over multiple peers.
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P2P networks have three main characteristics: self-organization, symmetric com-
munication and distributed control [265]. They are self-organizing in the sense that
they automatically adapt to the arrival, departure and failure of nodes. P2P networks
go beyond services offered by typical client–server systems since communication is
symmetric, where all peers act as both clients and servers. Lastly, P2P networks are
distributed systems in nature, without any hierarchical organization or centralized
control.

These main characteristics of P2P technologies make them well suited for archi-
tectural knowledge sharing among different stakeholders. By supporting an AKM
community with a P2P network, the participants (organizations, departments or in-
dividuals) can dynamically join the community, maintain their own architectural
knowledge while exchanging information [110]. A P2P network can further facil-
itate scalable composition of knowledge scattered across multiple and potentially
heterogeneous sources (peers) and integrated opportunistically when needed [6]. In
more detail, P2P network technologies can differ in how the peers are organized to
build a network topology, and in how they can share information. P2P networks
have been further classified into two main models, structured and unstructured
(summarized in Table 7.2).

The structured P2P networks organize peers in a tightly controlled topology,
where content is placed at pre-defined locations. This ensures higher performance
of data discovery than in unstructured P2P networks. Still, some freedom is main-
tained by allowing each peer to be responsible for its content shared in the network.
Structured P2P networks can efficiently locate rare items. In contrast, when queries
concern popular contents, they encounter higher overhead. Due to its static ar-
chitecture, this model resembles traditional client–server distributed architectures,
and complies much less with the general P2P philosophy. It can fit very well
in enterprises with a hierarchical organization and a static culture. There, AKM
communities are typically planned in advanced and are less likely to change very
quickly, or to cross the boundaries of the company. AK is typically explicit, fol-
lowing a codification strategy and reflecting a more technocratic KM school, where
the knowledge is typically stored in knowledge bases and the AKM processes are
documented.

According to the general model of unstructured P2P networks, the placement
of the data is completely unrelated to the network topology: the peers are directly
connected to each other, and they do not share any information about the data they
contain. On the one hand, unstructured P2P networks are easier to implement than
the structured ones, and require little maintenance. On the other hand, they are less
scalable, which makes them not suitable for large-scale communities.

To solve some of the limitations mentioned above, unstructured P2P networks
have been further specialized into hybrid centralized, purely decentralized and par-
tially decentralized [16]. Hybrid centralized networks (in Fig. 7.2.a) became popular
with Napster [231]. They use some managed infrastructure (the directory server),
which maintains a global index of the files currently shared on the network. This
introduces some scalability issues due to the limited size of the directory server and
its capacity to respond to queries [214]. When searching for some content, a peer
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Table 7.2 AKM aspects of different P2P network models

STRUCTURED UNSTRUCTURED

Hybrid Purely Partially
centralized decentralized centralized

Summary Pre-defined
topology of
both peers
and contents

Central directory
server in a
star topology
of peers

Dynamic, flat
topology of
random peers

Dynamic topology of
super-peer network
and attached
groups of peers

Dynamism (−) Static
structure and
pre-defined
location of
contents

(−) Static
structure and
location of
contents

(+) Dynamic
structure
configuration

(+) Dynamic structure
configuration

Semantic
description
of
knowledge

(−) Keywords (+) Keywords,
but the
presence of a
directory
server
enables the
use of more
advanced
semantic
descriptions
shared in the
network

(−) Keywords (+) Keywords, but the
presence of the
super-peers
enables the use of
more advanced
semantic
descriptions,
eventually
different for the
different peer
groups

Knowledge
discovery

(+) Efficient (+) Efficient (−) Inefficient
discovery of rare
contents

(+) Efficient

AK type Explicit Explicit Tacit Explicit, tacit
AKM strategy Codification Codification Personalization Hybrid
KM school Technocratic Technocratic Technocratic,

organizational
Technocratic,

organizational

Fig. 7.2 Unstructured P2P network models
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first contacts the central peers to receive the list of who shares it. Thereafter, the
peer can directly connect to the peers in the list. Discovery information is quick
and efficient. Nonetheless, hybrid centralized networks have a single point of fail-
ure which makes them vulnerable to attacks. If the central server (the “center of the
star”) is down, the network collapses completely. This has been demonstrated by
the nowadays known “Napster case”, where the Records Industry forced Napster to
shut down, proving the vulnerability of the hybrid centralized network model.

In this type of network AK can be naturally managed at the central server. Both
codification and personalization strategies could be supported, in that the partic-
ipating peers could share either content or the information about their skills and
expertise. Nonetheless, in both cases the failure of the central server would make the
whole network unavailable, which makes this type of network quite unsuitable for
AKM. A kind of hybrid approach could be to use this network for codification pur-
poses only, and rely on an alternative more reliable technology for personalization,
which demands higher availability to build trust among the participants.

Purely decentralized networks (in Fig. 7.2b, also called pure P2P networks) are
distributed systems without any centralized control. All nodes are equivalent in
functionality. They are organized in a random graph and use floods to discover
contents stored by peers. Each node visited during a flood (each node chooses a
neighbor at random) evaluates the query locally on the data items that it stores. This
model does not impose any constraint on the topology or on the placement of the
shared contents. It is suitable for very dynamic communities, sharing contents with
similar characteristics and existing in multiple duplicated copies, like mass-market
data sharing applications. It cannot efficiently locate rare data items, for which a
large fraction of the network must be visited.

Extreme dynamism and freedom makes purely decentralized networks very suit-
able for implementing personalization strategies in dynamic enterprises with an
open organization culture: AK sharing mechanisms like yellow pages and expe-
rience profiles can be easily exchanged, and the drawback of temporarily discon-
nected peers has less importance than in codification strategies (who is not available
cannot help either). Still, peers can share their codified knowledge with the (maybe
positive?) effect of “taking the knowledge with them when they are not connected”.
This can create important incentives in favor of AK sharing, e.g. authorship is
automatically recognized as the shared knowledge is identified with the peer it-
self. Following the technocratic KM school, purely decentralized networks (like all
P2P networks) have been created to share contents, in this case creating distributed
knowledge bases that dynamically change in terms of both structure and available
contents. Such P2P networks also follow the organizational KM school by support-
ing dynamism, i.e. informal networks and autonomous creation of communities of
practice. Without any type of central point of control, though, poor support can be
given to important AKM aspects like architecture compliance or alignment to shared
terminology.

Partially centralized networks (in Fig. 7.2c) combine the efficiency and resilience
of centralized networks, with the dynamics of decentralized ones. They yield a
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hierarchical topology made by two types of peers: the super-peers establish a back-
bone network of (centralized) index servers; they maintain the central indices for
the information shared by the peers connected to them, called leaf nodes, or simply
peers. When a new peer joins the network, it connects to a single super-peer, which
gathers and stores the information about the peer and its shared contents. Super-
peers are assigned based on certain criteria (typically bandwidth and processing
capacity). In spite of their central role, super-peers are not single points of failure:
if one of them fails, another peer will be promoted to super-peer and replace it. By
forwarding queries only to those peers that potentially provide matching contents,
super-peers significantly reduce discovery time, and overall network traffic.

Thanks to the balance between dynamism (of the peers) and centralization
(supported by the super-peers), partially centralized networks can support hybrid
AKM strategies: central information about expertise and skills, codified architec-
tural knowledge, its classification and location can be managed by the super-peers,
whereas personalization strategies can be implemented by dynamically available
peers. Moreover, super-peers can represent (sub-)communities that remain available
also when peer members are disconnected.

Looking back to Table 7.2, the majority of the P2P network models here dis-
cussed exhibit the following properties:

Dynamism. Once assigned, peer’s neighbors cannot be dynamically re-organized
to mirror the relativity of the current knowledge shared on the different nodes.
In this way, peer groups cannot mime too dynamic situations like teams of
professionals assigned to certain projects for a limited duration. Knowledge com-
munities need the dynamic reconfiguration of the peer groups driven by the
evolution of the shared knowledge.

Semantic knowledge description. Knowledge sharing is too coarse grained: con-
tents are typically shared at the “file level”, hence limiting the scope of the
searches to an external, pre-defined classification scheme. In this way, successful
sharing depends very much on having a common terminology shared among all
network members, and classification keywords that fit all their needs and well
represent the knowledge they want to share. Both preconditions are not feasi-
ble in communities spanning heterogeneous expertise, geographical boundaries,
multiple departments, or different enterprises [44].

Heterogeneity. Heterogeneity in knowledge and/or expertise is not well sup-
ported. Apart from the fact that a basic P2P principle is in the peers being all
the same, the actual contents (i.e. the semantics) of the shared knowledge is
not well described. In AKM communities architectural knowledge is typically
very variable and of diverse granularity. Hence, semantic support for knowledge
description is absolutely necessary.

To overcome these limitations, P2P networks can be combined with other ap-
proaches. Both Grids and the Semantic Web provide interesting solutions to the
shortcomings just mentioned.
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7.2.1.3 Grids

Grids can be defined as groups of interconnected nodes. A grid is a form of dis-
tributed computing whereby a cluster of networked, loosely-coupled computers act
in concert to perform very large tasks. A key characteristic of grid technologies is
that the resources of different companies are grouped to enable and facilitate the
collaboration of a group of people or organizations [312]. As such, grids present a
great level of heterogeneity (no assumption is made on the hardware, network tech-
nologies, operating systems, administrative domains or security policies involved).
This is the main difference with computational grids, where groups of twin nodes
are connected via a high-speed network and coordinated by a master node to execute
a single application in parallel on multiple machines.

The paradigm of the grid has been originally adopted from industries for deliv-
ering IT resources as a utility. Accordingly, grids have been addressed for a long
time as infrastructures clustering low level resources such as computing-, network-
and storage services. The last years, though, witnessed phenomena like globaliza-
tion and the ever increasing use of the Internet as backbone for big organizations.
This led to the definition of a variety of grid models under the umbrella of business
grids, i.e. the assembly of resources according to organizational principles and their
related management policies, to support overall business applications. Communities
of practice in the software architecture field are one example of business grids.

The applications supported by business grids are inherently interactive, requiring
requests and responses to be executed in a timely fashion. Typically, business appli-
cations have a number of requirements currently not addressed by grid technologies,
resulting in a gap between the future business grids and traditional grid technologies.
Types of business grids (extracted from [232]) are visualized in Fig. 7.3:

Enterprise grid is a grid within an organization. They naturally include grids
across different departments and within a wider organization. Accordingly, they

Fig. 7.3 Business grids [232]: (a) enterprise and departmental, (b) hierarchical collaborating, (c)
Virtual Enterprise Organization (VEO), (d) hosting



www.manaraa.com

122 P. Lago

can be seen as “grids of grids” including smaller (or departmental) grids. De-
pending on the level of integration, enterprise grids can be organized as loose
collections of departmental grids (shown in Fig. 7.3a) or as integrated, hierarchi-
cal networks of collaborating grids (in Fig. 7.3b): the more integration, the higher
the synergistic value delivered to the whole enterprise. A clear advantage of the
latter type of integration is that departments can exchange and share their knowl-
edge still remaining within the enterprise boundaries. In the case of departmental
grids, instead, only computational resources can be shared, hence leading to a
collection of islands with no transfer of knowledge.
Communities of practice in the software architecture field can be mapped on en-
terprise grids in a quite straightforward way: they reflect departments (or project
and teams within them); the more integrated the grids, the better the AKM strate-
gies. Nonetheless, success of AK sharing depends very much on the culture of
the organization, and on the policies in place [77].
Enterprises spanning multiple countries (thus crossing multiple administrative
domains as illustrated in Fig. 7.3b) may differ in legal requirements each depart-
ment should comply with. This can have a non-negligible impact on the type
and ways knowledge can be shared, as typically occurs in large organizations
carrying out global software development with off-shored departments.

Virtual Enterprise Organizations (VEOs) occur when different organizations
(falling under different administrative domains) collaborate. In this case, the
VEO (in Fig. 7.3c) regards only a subset of the whole enterprise grid. This type
of grid can be adopted in case of partnership- or sub-contractor relationship be-
tween companies. In a partnership, VEOs have a “peer” relationship, which is
typically regulated by a combination of the policies of the partners. In a sub-
contractor relationship, the one administrative domain (the main contractor) has
priority over the other, hence imposing its policies on the VEO. This typically
means that knowledge is transferred from the supplier (fulfilling the contract) to-
wards the main contractor, and less in the other direction.
AKM examples exist for both partnerships or sub-contracting. In the first case,
AK needs to be aligned and integrated. For instance, one of the major prob-
lems when IT enterprises close partnerships or are merged, is to understand how
to integrate their knowledge. To this end, we need to capture and represent the
semantics of the shared knowledge, one of the main challenges addressed by
knowledge grids [343].

Hosting grid is an environment providing resources and/or services to customers
(Fig. 7.3d). Typical examples are computing on demand or electronic transaction
management, but can also include e.g. on-line consulting or CRM. This would
mean that the ability to provide a good service to an enterprise directly depends
on the ability of the grid itself to support sharing of knowledge in a bi-directional
way: from the hosting enterprise to the consuming enterprise – to provide the
skills and services the hosting company is payed for, and from the consumer
back to the hosting enterprise – to deliver all necessary knowledge to get the best
fitting and tailored service.
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To our knowledge, hosting has not been discussed in the literature, at least not
from a technological point of view. In our opinion, grid technologies could
offer new business opportunities, for instance to transform AK as a business asset
and offer on-line knowledge-based expertise and support through a hosting grid
connection.

Ian Foster [124], the “father” of Grid, proposed a checklist for three main Grid char-
acteristics: (1) coordination of resources/contents that are not subject to centralized
control, (2) use of standard, open, general-purpose protocols and interfaces, and (3)
delivery of non-trivial qualities of service.

The business grids discussed so far denote the specific adaptation of the grid
paradigm to the context of business applications. Business applications (like AKM
in the context of enterprises) have not been explicitly excluded from traditional Grid
environments; however, their specific nature has been most often ignored. Business
grids in general, and their use for AKM in particular, clearly feature characteristics
(2) and (3) of the Foster definition: an open standards-based approach (characteris-
tic (2)) is key for realizing a shared infrastructure spanning different administrative
domains; business applications certainly require nontrivial qualities of service (char-
acteristic (3)) due to their highly networked nature, i.e. their coexistence with other
applications and services. For instance, the knowledge grid of a global enterprise,
unifying the AK communities of practice at all sites, must ensure qualities like
security, availability, performance, just to mention some.

Coordination of resources/contents (characteristic (1)) is fulfilled in most of the
cases, even if we should distinguish between centralized control and organizational
policies. For example, whilst different IT systems even within a single enterprise
may well be controlled (managed) by the various groups that use them, there is
likely to be some central policy set upon each of these by the enterprise. In more ad-
vanced scenarios (such as, again, communities of practice that cross organizational
boundaries) even a central policy may not exist. To support this situation, decentral-
ized solutions become more attractive, like those featured by the unstructured P2P
network models discussed in Sect. 7.2.1.2.

The grid models discussed in this section are independent from the type of knowl-
edge they share, and how they do it. Moreover, the notion of grid does not prescribe
if AK is tacit or explicit, or if the applications implemented by a certain grid support
codification or personalization strategies. Rather, grids aim at supporting heteroge-
neous knowledge and hybrid strategies, and unify them in a networked matrix of
participants. Thus, P2P networks and grids mainly differ (and complement each
other) in heterogeneity: grids support heterogeneous contents and participants, P2P
networks support heterogeneous structures of similar contents and twin participants.

7.2.1.4 Semantic Web

The Semantic Web [329] is intended to make the Web more intelligent by improving
the value of, and interactivity with, the vast amount of data on the Web. It is based
on three building blocks [117]: the Resource Description Framework (RDF) is the
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basic format to describe information on the Web. On top of that, ontology languages
define the terms used to describe and represent an area of knowledge [330]. The Web
Ontology Language (OWL) can define ontologies in a standard way for them to be
compatible and hence comparable. Thirdly, inference engines analyze ontologies to
find new relations among terms and data.

The wide and fast spreading of the Semantic Web is tangible in daily life: by in-
serting a sentence in a Web browser we can be easily connected to that one-matching
web site, or suggested with amazingly fitting hits. But this is just the top of the ice-
berg: companies crowd-source their most innovative products by analyzing opinions
expressed in social networks, whereas medical research counts enormous advances
by connecting knowledge bases once isolated and nowadays merged into a richer,
global body of knowledge.

Thanks to standard ontologies and inference engines able to scan the “Web of
data”, the Semantic Web can offer advanced approaches for data integration, knowl-
edge management and decision support. This is a powerful framework usable in any
type of context, including networks of professionals and data in the field of architec-
ture knowledge [117]. Still, the integration of knowledge born in different contexts
remains a very difficult and still insufficiently addressed problem. The Semantic
Web recognizes two main approaches to translate, or match, different ontologies [5]:

Direct matching defines the relations between pairs of ontologies using solely the
information contained in those two ontologies. The resulting information de-
pends on the actual contents of the used ontologies. It is very expensive and
inefficient, as each time a new ontology is created, new ad hoc matchings must
be added. This approach seems to be applicable only in very specific contexts
where different ontologies share a large enough number of common data items.

Indirect matching uses external background knowledge to derive the matching.
The relations between two (or more) ontologies is defined in terms of a core,
shared vocabulary that acts as standard reference. This approach assumes that
the knowledge context yields some level of maturity where a core vocabulary
can be defined.

We can find back these approaches in AKM, where enterprises use different, often
similar terms to mean same concepts. For instance, Liang et al. [207] compare di-
rect and indirect matching in AK management to measure their cost-effectiveness.
The GRIFFIN Grid (discussed in Chap. 8) exploits an indirect ontology matching
approach to loosely integrate collaborating organizations in a virtual and distributed
knowledge sharing community. Much work has been done in mining existing AK
bases or bodies of knowledge to generalize and codify AK instances in formalized
ontologies.

The Semantic Web provides the technology to define ontologies (thus support-
ing a codification strategy) so that the represented knowledge can be shared by
and become interoperable for any type of knowledge communities, including AKM
communities. For this to become true, the knowledge users need to discover new
ontologies, which are not known to them before, and use them to annotate the
content and formulate their information requests. This demands for environments
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that support creating and maintaining ontologies, and sharing them in a controlled
manner.

It must be noticed that the main focus in Semantic Web is on codification of
knowledge, even if the very same mechanisms are applicable to realize personaliza-
tion strategies, for instance, to semantically relate the information shared by people
in social networks and put them into contact [248]. This is already being done in
many social networking applications like Facebook or LinkedIn.

7.2.2 Supported Knowledge Communities

Table 7.3 summarizes the properties of Business Grids and the Semantic Web
separately, and highlights their respective pros and cons w.r.t. the AKM aspects.
In various application domains and research communities, the literature reports
on attempts to combine these approaches to support (either implicitly or explic-
itly) knowledge communities. Here we report on some examples, with the aim to
illustrate how they can support AKM.

As discussed in Sect. 7.2.1.2, P2P networks do not account for semantic rela-
tionships amongst resources. Many surveys have been carried out to solve these
shortcomings (e.g. [6, 110, 16]), with almost equivalent solutions: the combina-
tion of P2P and the Semantic Web technology in an attempt to overcome such
limitations.

Table 7.3 AKM aspects of Business Grids and the Semantic Web

BUSINESS GRIDS SEMANTIC WEB

Summary Groups of nodes with hybrid
characteristics. Types of business
grids are: (hierarchical) enterprise
and departmental, VEOs, hosting
grids

Web of semantically annotated
information and services, and
related enabling technologies.
Seen as one, global platform, no
specific organization is assumed

Dynamism (−) Possible but not explicitly
addressed

(−) Possible but not explicitly
addressed

Semantic
description of
knowledge

(−) Possible but not explicitly
addressed. AK sharing is supported
if the right business grid models
are chosen (e.g. VEOs enable AK
sharing, departmental grids don’t)

(+) Semantic Web technologies are
especially conceived to describe
and retrieve knowledge and
associated semantics

Heterogeneity (+) Support both heterogeneous
resources and services, and
heterogeneous knowledge. The
latter can be used to support hybrid
AKM strategies

(+) Supports integration of any type
of knowledge, for both codification
and personalization AKM
strategies

AK type Any Any
AKM strategy Any Codification (to enable any AKM

strategy on top)
KM school Organizational Technocratic
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For instance, Siebes et al. [299, 140] aim at supporting personalization strategies
in knowledge sharing. They introduced a model to semantically describe the exper-
tise of peers and how peers promote it as advertisement messages in a network, in
which a shared ontology is used. This model assumes that one ontology is shared
among all community members. This makes is very suitable for AKM communi-
ties within the same domain or practice, but less attractive for e.g. VEOs where
sub-communities need their own ontology. In the latter case, the ontology matching
problem must be solved to translate the knowledge from one ontology to another.

Works like [21, 6] realized environments that support the dynamic reconfigura-
tion of group memberships depending on the evolution in e.g. the knowledge shared
or the interests of the individuals. By sharing expertise descriptions and sending
around advertisements, AKM communities can grow and change dynamically.

An emerging trend in virtualization is Cloud Computing. Both Grid Computing
and Cloud Computing implement the more general model of Utility Comput-
ing [183]. However, while the first evolved in a scientific community as a means
to solve computationally challenging tasks, the latter focuses on Web-scale ap-
plications and services, and introduces innovative business models. By building
services on a Cloud Computing infrastructure, enterprises are suddenly granted with
potentially unlimited resources in terms of both storage, execution, services and
application logics. This way they can solve increasingly pressing issues like scal-
ability, availability, performance, flexibility, time to market; and they can realize
the promise of the Internet to offer same opportunities to e.g. large organizations
and startups. As summarized in BusinessWeek [179], “The term ‘cloud computing’
encompasses many areas of tech, including software as a service, a software dis-
tribution method pioneered by Salesforce.com about a decade ago. It also includes
newer avenues such as hardware as a service, a way to order storage and server
capacity on demand from Amazon and others. What all these cloud computing
services have in common, though, is that they are all delivered over the Internet,
on demand, from massive data centers.”. As such, Cloud Computing encompasses
many areas of technologies from software-as-a-service, to hardware-as-a-service, to
social networks or Web 2.0, further discussed in Sect. 7.3.

7.3 From Knowledge Communities to Social Networks

In contrast to the networking platforms discussed in Sect. 7.2, some communities
first emerged from the practice and organized themselves as networks de-facto, and
only later considered how emerging technologies could act as enablers.

McDermott [222] gives some advice on the establishment of communities of
practice. He describes the complementarity of cross-functional teams and commu-
nities of practice within an enterprise. Cross-functional teams link together people
from different professions, who work in close proximity to deliver well defined,
shared outputs (typically products). They are driven by clear tasks and have clear
boundaries determined by a pre-defined selection of team members. Communities of
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practice (COPs) are groups of people sharing common interests and expertise, who
arise naturally as organic networks with permeable boundaries, where people join
and leave depending on how interests evolve, or ’hot topics’ shift, over time. Such
communities are driven by the value (information, interests or practices) provided
to the members of the community. The focus is on learning.

Because communities of practice are voluntary, what makes them successful over
time is their ability to generate enough excitement, relevance, and value to attract
and engage members [336]. While teams are very efficient in producing a final
product resulting from cross-functional expertise, they may hinder cross-team in-
teraction, hence leading to isolation. COPs, in turn, can bridge this isolation gap by
cross-connecting knowledge.

This self-organization of COPs does not preclude the possibility for enterprises
to start them intentionally, and provide the right mechanisms for them to grow.
Gongla and Rizzuto [135] indicate three forces that are influential in COPs evo-
lution, namely people, processes and technology. Among the lessons learned, the
authors highlight that successful communities always grow around people who
share a common interest or expertise, and fail if, for instance, too much attention
is given to process and technology. While technologies are fundamental to support
the sharing of tacit and later of explicit knowledge, they should always be flexible to
fit the needs of the people, and adapt to their specific habits and preferences. A sim-
ilar observation has been reported by Thomas et al. [321] for virtual teams working
in global settings. While technology results absolutely crucial to effectively support
collaboration, its successful use should be regularly monitored and timely changed
if not fitting well in people’s work.

Various studies report on technologies supporting knowledge communities. Tho-
mas et al. [321] report on the top 20 technologies used in more than 20 organizations.
Next to what they call “comfort technologies” common to all organizations (audio
conferencing, email and phone) the mostly used tools are related to project- and
task management, version management and people-to-people communication (all
used in between 73% and 80%). More complicated tools like knowledge portals
and wiki’s score relatively low (55% and 7%, respectively). Technologies explicitly
mentioned in [135] include on-line directories, search engines, and yellow pages to
identify individuals and groups according to their knowledge and expertise. These
aim at supporting personalization strategies – for COPs to grow, build community
identity and trust, and to quickly link individuals on cross-functional teams with
their peers. Technologies mentioned to support codification strategies include on-
line repositories, classification and categorization schema tools, portals, and tools
for collaboration and decision-making.

7.3.1 Social Communities

By looking at existing communities, we can distinguish between knowledge com-
munities and social networks. Knowledge communities focus on the human and
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motivation aspects of groups of people to come together. Social networks focus
on the creation of technology-supported networks that link them together on a
distributed network like the Web.

Nowadays there is little difference between knowledge communities and social
networks. Rather, they are two sides of the same entity, i.e. social communities.
Examples of social communities in the software architecture field span from pro-
fessional bodies (like the International Association of Software Architects, The
Worldwide Institute of Software Architects and the IFIP Working Group 2.10 on
Software Architecture) to enterprise communities (like www.bredemeyer.com or the
Architecture blogs of professionals and companies like Microsoft and IBM).

7.3.2 Support for Social Communities

Two main technologies play an increasingly important role in supporting social
communities, Web 2.0 and wiki systems. Chapter 6 addressed them from a techno-
logical perspective, by describing which AKM use cases they can support. Here we
further describe their ability to support social interaction in Web-based
communities.

7.3.2.1 Web 2.0

The term Web 2.0 became prominent after the O’Reilly Media Web 2.0 conference
in 2004. According to O’Reilly [242], “Web 2.0 is the business revolution in the
computer industry caused by the move to the Internet as a platform, and an attempt to
understand the rules for success on that new platform.” As such, Web 2.0 represents
a paradigm shift in how people use the Web [209], introducing social more than
just technological innovation. For instance, Web 2.0 introduces open contribution
of knowledge, and its global (if not free) access. This has been a major revolution
in what enterprises always considered as industrial secret and their differentiating
factor.

Lin [209] defined this social innovation in terms of three principles that Web
2.0 technologies should support: simplicity to attract and involve common people,
scalability to ensure global access, and sensibility to report about and influence
popularity.

Though recognizing that the definition of Web 2.0 remains elusive, Clarke [70]
identifies four key aspects of Web 2.0 from a marketing perspective: syndication of
(1) content, (2) advertising, (3) storage and (4) effort. There, syndication refers to the
loose, unincorporated affiliation of people or companies, and the loose distribution
of media material. In its essence, the central aspect of Web 2.0 can be identified
in the transformation of the Web into a global platform for information sharing
(corresponding to content syndication) coupled with the ability of both individuals
and organizations to contribute new information and modify existing one. This led
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to cascading effects, like open access to any type of resources, new business models,
and new privacy and ethical concerns.

In Clarke’s classification, effort syndication is especially relevant for AKM com-
munities. He observes that individuals perceive themselves as participating to a
community, whereas their efforts and behaviour are part of an economy being
used (either officially or unofficially) for profit. The communitarian perspective
implies a fifth key aspect of Web 2.0 termed social syndication, this embracing
“cross-leveraging and collaboration of content, effort and infrastructure”.

Yakovlev [340] gives an overview of widely known Web 2.0 mechanisms that
enable the autonomous creation of virtual communities of peers. Among them we
find wiki’s (used by enterprises to aggregate input from members of various fo-
cused groups), RSS feeds (allowing community members to remain up-to-date on
selected subjects), social networking (supporting autonomous community build-
ing) and folksonomies (supporting users of a social environment in collaboratively
creating and managing tags to annotate and categorize content).

As observed by Passant et al. [248], the emergence of social networks allow to
build apparently unrelated islands of information. Semantic Web capabilities and
Web 2.0 technologies together can support detecting complex networks of relations
among these islands, hence inferring new knowledge.

7.3.2.2 Wiki’s

First created in 1994 (WikiWikiWeb), wiki systems’ initial goal was to give people
the ability to quickly put content on the Web. While very much used in private
communities within enterprises, wiki’s were meant for the general public – to
gather content bottom-up, delegate control on content to its contributors and reach
consensus.

O’Leary [240] describes the pros and cons of wiki systems in making tacit knowl-
edge explicit. By making available information about contributors, wiki’s can link
people with common interests. They are very suitable to describe best practices, and
gather and structure information like vocabularies and taxonomies. On the other
hand, wiki’s typically lack referees or peer reviews, fact that can lead to inaccu-
rate information. Nonetheless, some limitations are mitigated by more advanced
features, like the ability to control changes by alerting the original contributors
or people interested in a particular subject, and by categorizing contributors by
reliability or level of expertise.

Semantic wiki’s combine wiki’s properties, such as ease of use, collaboration,
and linking, with Semantic Web technologies, such as structured content, knowl-
edge models in the form of ontologies, and reasoning. They offer simple ways to
semantically annotating information, seamless semantic search, and extraction of
metadata from contents like articles and documents.

Recently, wiki’s are being increasingly used as knowledge management tools.
As reported in [274], a weakness of normal wiki’s is that knowledge is easy to
create but increasingly difficult to retrieve. Semantic wiki’s provide a solution to
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this problem, by allowing its uses to easily enrich the captured knowledge, and
further instantly benefit from the unavoidable additional effort. Several European
Union projects investigated knowledge management in semantic wiki’s [www.kiwi-
project.eu, nepomuk.semanticdesktop.org].

AKM demands for a mix of generic and domain specific features. Farenhorst
and van Vliet [116] observed that wiki’s can be very supportive to the architecting
process. Nonetheless, in their list of do’s and dont’s, very little turns to be specific
to architectural knowledge, and the main strengths of using wiki’s resulted to be
their support for a central storage place for any type of information and its use for
connecting people. In comparing the existing AKM tools, they further identify a
main advantage shared by all of them, namely their use of a tailored database and
underlying knowledge model that support well knowledge retrieval. Wiki’s are weak
in this respect: simplicity is indeed at the cost of efficiency. Nonetheless, semantic
wiki’s might have been solved this issue.

A different though successful approach based on wiki’s is discussed in Chap. 12
where the focus is purely on supporting AK codification and sharing.

7.4 Summary

As we have seen in the previous sections, we recognize two overall approaches
supporting the establishment and the management of social networks aimed at
knowledge sharing. Section 7.2 presented and compared peer-to-peer networks,
Grids and the Semantic Web, and how they can support knowledge communities
from a main technological perspective. AKM communities can be mapped on the
various types of business grids, and depending on their characteristics and their AK
sharing objectives the best fitting P2P model and/or Semantic Web technologies can
be adopted.

Section 7.3 presented the concept of social communities and how they can be
supported by Web 2.0 and Wiki’s. Here we considered Web 2.0 as the loose affilia-
tion of people and companies, and the loose distribution of content, resources and
effort. As such, it includes an overarching umbrella of technologies that can support
any type of AKM community, for instance combining the approaches discussed in
Sect. 7.2. Wiki’s are one example of such technologies gaining in popularity and
maturity in the AKM industrial practice. Wiki’s take a codification approach, but to
potentially support any type of AKM strategy.

From a holistic perspective, the approaches we discussed complement each other
in realizing AK sharing social networks. Peer-to-peer networks and Grids use the
Internet to inter-connect sites, thus building a Web of people (and organizations).
The Semantic Web uses the Internet to inter-connect knowledge, thus building the
Web of data (i.e. the AK to be shared by people). Finally, Web 2.0 uses the Web
of people and data to inter-connect services, thus offering the mechanisms for AK
sharing (i.e. the Web of services). While paradigms and technologies for knowledge
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sharing social networks seem mature enough for use in the practice, we feel that
they are still largely unexplored in their combination, and full potential.
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Irrespective of the sophistication and theoretical soundness of a software devel-
opment technology, it is hard to predict with any level of confidence how it
would perform in real-world scenarios, how well it would be accepted by the
intended users, or how easy or hard it would be to integrate it in the current de-
velopment processes. Methods, techniques, and tools for managing architectural
knowledge are no exception to the rule. Rather, any technology related to a mul-
tidisciplinary area such as knowledge management can pose more technical and
non-technical challenges than a pure technical solution. Only practical experiences
from real-world settings can show whether and how a particular architecture knowl-
edge management technology works and what challenges can be expected. In this
Part, the focus is on exactly these aspects of architecture knowledge management
solutions.

The lessons learned and experiences gained from developing and implementing
technologies for managing architectural knowledge will provide useful insights to
readers interested in gaining knowledge about the industrial use of the methods and
tools presented in this book. The chapters in this part are focused on showing the
practical applications of the theoretical approaches, tools, and technologies for sup-
porting the architecture knowledge management. Having described the theoretical
approaches, techniques, and tools in the first two parts of this book, this part reveals
how to put them into practice to support the activities and processes for managing
architectural knowledge. Moreover, practitioners can also be interested in knowing
the potential implications of and the required resources for introducing architecture
knowledge management initiatives in their respective organizations.

To answer these questions, this part of the book presents several case studies, ex-
perience reports, and empirical studies of the architecture knowledge management
technologies. It also provides insights into the human and organizational aspects of
capturing and sharing architectural knowledge based on empirical studies carried
out in large organizations.

This part starts with a chapter on lessons learned from a Dutch research project,
GRIFFIN, which aims to develop notations, tools, and methods to extract, rep-
resent and manage architectural knowledge to support the architecting processes.
The project team, Hans van Vliet, Paris Avgeriou, Remco de Boer, Viktor Clerc,
Rik Farenhorst, Anton Jansen, and Patricia Lago, reflects upon their experiences
of developing and deploying various methods and tools for managing architectural
knowledge. They highlight the key achievements of this four year long project and
summarize the lessons learned from the case studies they carried out during the
project. The reported experiences also provide useful insights into the mechanics
and pre-requisites of successful research and industry collaboration for developing
and empirically assessing architecture knowledge management solutions.

Reasoning is an integral part of a decision making activity like designing ar-
chitectures. Most of the time, the reasoning is not performed systematically and
explicitly. That means the reasons underpinning design decisions remain implicit
and undocumented. In chap. 9, Antony Tang and Hans van Vliet propose a method
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for supporting systematic reasoning during the architecture design process. This
chapter provides an overview of the limitations of existing design rationale ap-
proaches and details different aspects of the proposed method. The authors also
report an industrial case study carried out to assess the proposed method. The
findings from the case study provides the evidential support for the practical ben-
efits of the presented method and associated graphical representation for explicitly
modeling design decisions and reasoning.

Feedback loops and experience-based learning are necessary for improving an
organization’s abilities of sharing architectural knowledge. However, many organi-
zations may not be able to design and deploy effective and efficient feedback and
experience flows for sharing architectural knowledge. In Chap. 10, Kurt Schneider
and Daniel Lübke describe an approach to modeling information flows as a means
of sharing architectural knowledge in an organization. He demonstrates the use of
the information flows for sharing knowledge about Service-Oriented Architecture
(SOA) in a project.

Open Source Software (OSS) has become a major force behind the reuse of plat-
forms, components and code between organizations. However, there is hardly any
reliable information about the practices of sharing knowledge about architectural de-
cisions in OSS projects. It is assumed that knowledge sharing is mainly implicit with
the project owners or package owners being the sources of architectural knowledge.
Ioannis Stamelos and George Kakarontzas tackle this issue in Chap. 11 by provid-
ing a detailed account of the different mechanisms used to share knowledge about
architectural decisions in OSS communities. They also identify some of the most
commonly used ways of storing architectural knowledge, which is easily accessible
to the developers and users of OSS projects.

IBM is well known for having effective and efficient processes and technolo-
gies to support knowledge management within its business units. In Chap. 12, Olaf
Zimmermann, Petra Kopp, and Stefan Pappe describe the practices and technolo-
gies they have introduced in one of the business units of IBM for capturing and
sharing architectural knowledge. The authors provide a detailed account of their ap-
proach to building and using a Service-Oriented Architecture (SOA) infrastructure
reference as a mechanism of managing architectural knowledge. Their case study
also provides useful information about various ways of identifying, distilling, and
distributing architectural knowledge from industrial projects.

It is a common observation that there is quite less information available about the
industrial practices of managing and sharing architectural knowledge. Even lesser is
known about the socio-psychological factors that need to be taken into account for
designing and deploying architectural knowledge sharing strategies. Chapter 13 pro-
vides important information on this vital topic. In this chapter, Eltjo Poort, Agung
Pramono, Michiel Perdeck, Viktor Clerc, and Hans van Vliet report the findings
from a survey study that aimed to explore the opinions and experiences of soft-
ware architects about various aspects of architectural knowledge sharing in a major
Dutch IT services company. Their analysis of the gathered data provides interesting
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insights into the challenges involved in sharing architectural knowledge and the
relationships between knowledge sharing and successful projects. The results re-
ported in this chapter can help practitioners to understand the different factors that
can motivate software architects for sharing architectural knowledge. This chapter
also appears in the Proceedings of the 2009 Conference on the Quality of Software
Architectures (QoSA).
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Chapter 8
The GRIFFIN Project: Lessons Learned

Hans van Vliet, Paris Avgeriou, Remco C. de Boer, Viktor Clerc, Rik Farenhorst,
Anton Jansen, and Patricia Lago

Abstract GRIFFIN is a joint research project of the VU University Amsterdam
and the University of Groningen. The GRIFFIN project develops notations, tools
and associated methods to extract, represent and use architectural knowledge that
currently is not documented or represented in the system. The research is carried
out in a consortium with various industries, both large and small, that provide case
studies and give regular feedback. Paraphrasing [327], the goal of the GRIFFIN
project can be summarized as “What architects know, and how they know it”. In
this chapter, we give an overview of the results of the GRIFFIN project, and lessons
learned with respect to software architecture knowledge management.

8.1 Introduction

GRIFFIN is a joint research project of the VU University Amsterdam and the
University of Groningen, both in the Netherlands. GRIFFIN stands for “GRId For
inFormatIoN about architectural knowledge”. The project is supported by the Dutch
Joint Academic and Commercial Quality Research and Development (Jacquard)
program on Software Engineering Research, and runs from 2005–2009. The re-
search is carried out in a consortium with various industrial partners, both large and
small. These partners provide us with case studies and give regular feedback. The
domains of these case studies range from a family of consumer electronics prod-
ucts to a highly distributed system that collects scientific data from around 15,000
sources to a service-oriented system in a business domain.
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The GRIFFIN project develops notations, tools and associated methods to ex-
tract, represent and use architectural knowledge that currently is not documented or
represented in the system. In GRIFFIN, Architectural Knowledge is defined as the
integrated representation of the software architecture of a software-intensive sys-
tem) or a family of systems), the architectural design decisions, and the external
context/environment.

GRIFFIN was partly inspired by earlier research we carried out in design space
analysis. In [57], we analyzed the complete design space of an electronic commerce
system. In the end, three feasible solutions remained. For each of these feasible so-
lutions, trade-offs had to be made, and certain requirements had to be relaxed on the
way to the final solutions. After the exercise, we confronted an experienced archi-
tect in the domain of electronic commerce with our analysis. He told us he knew
these three solutions existed. But he also told us he did not (anymore) know of the
trade-offs made on the way to these solutions. This architectural knowledge had
apparently vaporized. This is typical for many a software development processes.
Architectural knowledge is like material floating in a pond. When not touched for
a while, it sinks and disappears from sight. The original goal of the GRIFFIN
project was to make this architectural knowledge explicit as much as possible, to
prevent it from getting out of sight. Paraphrasing [327], this can be summarized
as “What architects know, and how they know it”. In the next sections, we give
an overview of the case studies carried out and the results obtained, and conclude
with lessons learned w.r.t.software architecture knowledge management. In terms
of the classification given in Chap. 2, our research fits the decision-centric view on
software architectural knowledge, with specific attention to three of the four trends
mentioned in Sect. 2.4: Sharing architectural knowledge, Aligning architecting with
requirements engineering, and Intelligent support for architecting.

8.2 The Beginning

In the first year of the project, we tried to characterize the use of architectural knowl-
edge in the Netherlands at that time. We devised a model of architectural knowledge,
an abstract conceptualization of the architectural knowledge domain, and applied
this model to various participating organizations. We also constructed a series of
use cases for architectural knowledge, and performed survey-based research to get
insight in the way practitioners view and use architectural knowledge.

8.2.1 Core Model of Architectural Knowledge

Our initial model of architectural knowledge was based on existing literature and our
own insights and ideas. We next tried to map actual usage of architectural knowledge
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in four participating organizations onto this model. These four organization can be
described as follows:

• RFA, a large software development organization, responsible for development and
maintenance of systems for among others the public sector.

• VCL, a large, multi-site consumer electronics organization where embedded
software is developed in a distributed setting.

• RDB, an SME performing independent software product audits for third parties.
• PAV, a large scientific organization that has to deal with software development

projects spanning a long time frame (up to a period of more than ten years).

The initial model exhibited a number of mismatches between our theory and indus-
trial practice. The initial model highly conformed to the IEEE-1471 standard for
architectural description [155]. IEEE-1471 prescribes the use of so-called ‘View-
points to describe the architecture from the perspective of different stakeholders.
The resulting ‘Views (partial descriptions of the architecture) are aggregated in a
single architecture description. Although stakeholders and their concerns play a key
role in any software architecting process, the tight coupling of the model to IEEE-
1471’s Views and Viewpoints turned out to be a mismatch with most organizations
practice. In hindsight this need not come as a big surprise, since organizations can
(and do) use other approaches for documenting their architectures, which need not
coincide with the IEEE-1471 way.

From a closer inspection of the mismatching concepts we learned that those con-
cepts could either be expressed in terms of other concepts already present in the
model, or as more generic concepts that are used by the organizations. We therefore
constructed a new model of architectural knowledge that is both minimalistic and
complete. We regard a model as complete if there are no concepts from other ap-
proaches that have no counterpart in the model. With ‘minimalistic we signify the
feature that it should not be possible to express some concepts from the model in
any other concepts from the model. Based on these insights we modified the initial
model to obtain a model that is both complete and minimalistic. Because of this
latter feature, we refer to our model as a core model of architectural knowledge;
elements that can be modeled in terms of core elements do not belong to the core.

Our core model of architectural knowledge is depicted in Fig. 8.1. As a result
of the minimalistic aspect of this model, the core model leaves room for the use of
different architecture description methods, including IEEE-1471. In our core model
of architectural knowledge, the concepts of Stakeholder and Concern coincide with
the, widely accepted, definitions of these terms in IEEE-1471: a stakeholder is “an
individual, team, or organization (or classes thereof) with interests in, or concerns
relative to, a system” [155]. Both IEEE-1471 concepts of Architectural Model and
View are subsumed in our notion of Artifact, i.e. an inanimate information bearer
such as a document, source code, or a chapter in a book. Storing or describing the
Architectural Design in either of these artifacts can be abstracted to a single ac-
tion to reflect. The Architectural Design can be reflected using different Languages,
including models, figures, programming languages, and plain English.
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Fig. 8.1 Core model of architectural knowledge

Constructing an architectural design is essentially a decision making process. In
our core model, decision making is viewed as proposing and ranking Alternatives,
and selecting the alternative that has the highest rank, i.e. the alternative that, after
careful consideration based on multiple criteria (i.e. Concerns), is deemed to be the
best option available with respect to the other alternatives proposed. It is especially
this process of proposing, ranking, and selecting which is hard to articulate and
distinguishes the good architects from the weaker. The chosen alternative becomes
the Decision. The alternatives that are proposed must address the Decision Topic,
and can be ranked according to how well they satisfy this and other concerns.
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Architectural Design Decisions are defined as those Decisions that are assumed
to influence the Architectural Design and can be enforced upon this Architectural
Design, possibly leading to new Concerns that result in a need for taking sub-
sequent decisions. This decision loop captures the relations between subsequent
Architectural Design Decisions. This loop also corresponds to the divide and con-
quer technique of decision making, in which broadly scoped decisions are taken
which may result in finer grained concerns related to the broader concern. It also
mimics the feedback loop identified in [146].

Although the original model did not entirely fit all organizations, diagnosis of the
use of architectural knowledge in those organizations at least showed that each of
the organizations has its own perspective on architecture knowledge management,
resulting in different issues at each of the organizations. The central issue within
RFA was how to share architectural knowledge between stakeholders of a project.
The main question within VCL was how compliance with architectural rules can
be enforced in this multi-site environment. RDB was mainly concerned with how
auditors can discover the architectural knowledge they need to do a proper audit.
The main challenge for PAV was how to improve traceability of its architectural
knowledge. While the mismatches between theory and practice still prevented us
from pinpointing the exact areas of improvement, at least we had an idea where to
search for those areas in a next research iteration. These insights provided the basis
for the subsequent research in each of these areas, as discussed in Sects. 8.3–8.6.
More details about the core model as well as the mapping of architectural knowledge
use of the four participating organizations onto this model can be found in [44].

Another use of the core model of architectural knowledge is as a common vocab-
ulary for different organizations. The architectural knowledge of each organization
remains expressed in its own terminology, and the core model is used as a shared,
reference standard defining the mapping between different knowledge concepts. In
our vision, organizations can collaborate on the Web in a grid-like configuration of
connected sites, forming a virtual community. In this scenario, the AK mapping via
the core model can be used to integrate the services shared on the grid, and therefore
facilitate further AK sharing, and collaboration.

8.2.2 The Architect’s Mindset

In a next step, we devised a series of typical usages (use cases) of architectural
knowledge, and conducted a survey-based study to get insight into the importance
practitioners attach to these use cases. These use cases are listed in Table 8.1.

We cluster the use cases based on the purpose of the individual use cases. Some
use cases clearly deal with stakeholders only. Consequently, we grouped these use
cases into a single cluster. The use case cluster Architectural decision set presup-
poses that a set of knowledge entities (i.e. architectural decisions) and relations
between these knowledge are aimed at managing that set. Several other use cases
have to do with assessing or reviewing an architecture. Within this Assessment
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Table 8.1 Use cases for architectural knowledge

Use case cluster Use cases

Architectural 11. View the change of the architectural decisions over time
decision set 15. Recover architectural decisions

20. Identify incompleteness
22. Detect patterns of architectural decision dependencies
23. Check for superfluous architectural decisions
24. Cleanup the architecture

Assessment – 1. Check implementation against architectural decisions
reqs.→arch.→impl. 5. Check correctness (i.e. architecture versus requirements)

18. Evaluate the impact of an architectural decision
19. Evaluate consistency
27. Get consequences of an architectural decision

Assessment – 4. Perform a review for a specific concern
risk, tradeoff analysis 16. Perform incremental architectural review

17. Assess design maturity
21. Conduct a risk analysis
25. Conduct a trade-off analysis

Stakeholder-centric 2. Identify the subversive stakeholder
3. Identify key arch. decisions for a specific stakeholder
6. Identify affected stakeholders on change
7. Identify unresolved concerns for a specific stakeholder
8. Keep up-to-date
9. Inform affected stakeholders

26. Identify important architectural drivers

Forward Architecting 10. Retrieve an architectural decision
12. Add an architectural decision
13. Remove consequences of a cancelled decision
14. Reuse architectural decisions

cluster, we distinguish between use cases that imply a forward-engineering ap-
proach to architecture (i.e. from requirements, to architecture, to implementation),
and use cases that target at performing different kinds of analyses and reviews.
The first set aims at verification of the architecting activities (are we still on the
right track?) whereas the second set aims at validation. Seven use cases form the
cluster Stakeholder-centric. These use cases concern identification of stakeholders
and communication of the architecture to specific stakeholders. The cluster For-
ward Architecting, finally, consists of use cases that create, request, reuse or remove
architectural decisions. A summary of the survey results is given in Table 8.2.

The use cases for architectural knowledge within the cluster Architectural deci-
sion set assume that a set of architectural decisions is at the practitioners disposal. In
terms of the use cases, architecting thus boils down to managing and manipulating
that set of architectural decisions. Our survey shows that viewing the architecture
as a set of architectural decisions and managing that set has not yet transferred to
practice, nor is it of particular value to the practitioners.
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Table 8.2 Survey results for architectural knowledge use cases

Stakeholder-centric +
Forward architecting +
Assessment - reqs.→arch.→impl. +
Architectural decision set −
Assessment - risk, trade-off analysis −

The cluster labeled Assessment - reqs.→arch.→impl. covers traceability of ar-
chitectural decisions to the actual implementation, the relation between decisions
themselves, and from architectural decisions back to the requirements that have
been set for the information system. Especially respondents in ‘construction’ roles
with respect to architecture (such as architects, designers, developers) regard these
use cases as important. This confirms our idea that practitioners involved in the
construction of architectures have a need for traceability of architecture. The use
cases in the cluster Assessment - risk, trade-off analysis are mostly not regarded as
important.

A difference that exists between the two subclusters within Assessment could lie
in the architects mindset. The results of the cluster Assessment - reqs.→arch.→impl.
reveal a mindset with a linear (i.e. non-iterative) approach to designing an architec-
ture that satisfies the posed requirements and subsequently have the implementation
satisfy the architecture. Use cases that offer traceability in this approach are regarded
as important. The use cases in the cluster Assessment - risk, trade-off analysis, on
the other hand, all are aimed at having an intermediate period of reflection to verify
what risks apply, or what quality attributes could be affected by certain architec-
tural decisions. These use cases are not directly related to either requirements or
implementation. In summary, in contrast to the literature stating that architecture
offers a good means to assess the correctness and suitability of the desired solution
(e.g. [34, 147]), our results reveal architects regard the use cases for architectural
knowledge in the Assessment - risk, trade-off analysis cluster as not particularly
important. Literature points out that an architecture enables us to assess the design
maturity, perform incremental, iterative design reviews, and periodically identify the
largest risks pertaining to the architecture. Apparently, these benefits of architecture
are not valued by our respondents, which is surprising. Moreover, the use cases in
the cluster Assessment - risk, trade-off analysis aim at finding possible problems in
a certain architecture. Since practitioners do not regard these use cases as impor-
tant, we might infer that practitioners do not favour a period of reflection in which
the current state of the architecture is explicitly tested. Yet, this is one of the main
reasons stated in the literature for developing an architecture. Apparently, these in-
tended benefits of architecture have not yet been firmly established in the mindset
of architects. The lack of value contributed to the intended benefits reveals a mind-
set of positiveness (“architects always take the right decisions”), which supports the
findings of [314]. Respondents do not like to use architectural knowledge to identify
potential weaknesses of their design.



www.manaraa.com

144 H. van Vliet et al.

A number of use cases for architectural knowledge are Stakeholder-centric.
These use cases involve identifying stakeholders and communicating the architec-
ture towards these stakeholders. Five out of the seven use cases in this cluster are
regarded as important by the respondents. The remaining use cases identify affected
stakeholders on change and identify key architectural decisions for a specific stake-
holder are deemed neutral. Furthermore, stakeholder-centric use cases are regarded
as more important at the business oriented architecture levels, confirming the gen-
eral idea that at these levels, communicating architecture to non-IT stakeholders is
an important issue. The other way around, practitioners engaged in technical ar-
chitecture fields do not regard communication of the architecture to stakeholders
as important. Apparently, at these levels, practitioners mainly capture architectural
decisions for themselves and not for communication to other stakeholders. This in
itself is not bad, but reveals that different communication needs exist for different
architecture levels.

Four use cases for architectural knowledge fall into the cluster Forward Architect-
ing. When we regard the use cases in this cluster we see that adding an architectural
decision is deemed important at all architecture levels and by most architectural
roles. The use case remove consequences of a cancelled decision is not deemed
very important. We can identify two reasons for this. Firstly, this use case requires
that a practitioner is able to cancel an architectural decision. Consequently, the prac-
titioner should determine the decision that needs to be cancelled. This requires the
practitioner to make a review iteration. Secondly, this use case does not directly
contribute to the forward-engineering paradigm we identified when we analysed the
Assessment use cases. Other use cases in this cluster, such as reuse architectural
decisions and retrieve an architectural decision are deemed important by all archi-
tectural roles and at all architecture levels. These results show that the practitioners
regard architectural decisions as an important asset to be reused in developing a
specific architecture.

In summary, the mindset of architects in the Netherlands (as of 2006) reveals
an approach which is focused on to create and communicate rather than to review
and maintain. This reflects a general pattern as e.g. highlighted in [314]. A more
elaborate discussion of our findings is given in [78].

8.3 Sharing Architectural Knowledge

Our research into sharing architectural knowledge took place in a large software
development organization, responsible for the development and maintenance of sys-
tems for among others the public sector, termed RFA in Sect. 8.2.1. We started from
the premise that architectural knowledge sharing is best supported by codifying this
knowledge in terms of our core model. In our first case study in RFA, we found that
stakeholders will only share knowledge if the necessary incentives are created [115].
We continued this line of reasoning in a second case study, resulting in a hybrid
codification/personalization knowledge management strategy [114], allowing for a
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Just-In-Time architectural knowledge sharing portal [113]. In our current work, we
are implementing these ideas using Web2.0 technologies such as wikis [116]. This
is in line with the trend identified in Sect. 2.4.1 of Chap. 2.

We started our research in RFA with a diagnosis of how architectural knowledge
was perceived in the organization. We used three main sources for this diagnosis: a
questionnaire containing several use cases for architectural knowledge, a documen-
tation study of standards, best practices and architectural descriptions, and finally a
set of open interviews with various stakeholders of the architecting process.

As a result, we have distilled four issues related to sharing architectural knowl-
edge in RFA:

• No consistency between architecture and design documents. There is no align-
ment between the architecture descriptions and the functional design and techni-
cal design documents used by developers and maintainers.

• Communication overhead between stakeholders. Developers occasionally have
to explain the architects technical decisions more than once. The reason for
this is that decisions made in earlier meetings, including the rationale for these
decisions, are not adequately stored in the architecture description.

• No explicit collaboration with maintenance teams. Although maintainers are tar-
geted in the architectural documentation, they are not involved as a stakeholder
in the architecting process.

• No feedback from developers to architects. Developers sometimes wear the hat
of the architect and also make design decisions. However, architects are not in-
formed on the decisions made by the developers unless explicit meetings take
place.

From these observations, we concluded that architectural knowledge sharing was
still immature. We next suggested an improved process, essentially centered around
better means to codify architectural knowledge [115]. One of our recommendations
for example was to establish a central architectural knowledge repository.

Literature though presents warnings that not all knowledge sharing implemen-
tations are automatically successful. In [133] several factors that make knowledge
sharing difficult are listed, such as the fact that knowledge sharing is time consum-
ing, and that people might not trust the knowledge management system. Another
warning is that striving for completeness is infeasible. In addition, we should be
aware of the fact that a lot of the available knowledge cannot be made explicit at all,
but instead remains tacit in the minds of people [234]. Sharing such tacit knowledge
is very hard.

In order to design successful tools for knowledge sharing, a strategy needs to
be chosen. In Chap. 1, we distinguished two main knowledge management strate-
gies: codification and personalization. In the architecting process, some architectural
knowledge might benefit from a codification strategy, whereas other types of knowl-
edge could be better shared using personalization approaches. A hybrid approach,
first coined in [92], is therefore worth considering. Such a hybrid approach could
provide a balance between formalized and unstructured knowledge. According
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to [141], such a balance is an important prerequisite to stimulate the usage of
tools.

To define in more detail how a hybrid architectural knowledge sharing approach
should look like we can draw on a study about knowledge sharing by Van den
Brink [52]. Van den Brink describes four steps need to be executed in order to
create “an interconnected environment supporting communication, collaboration,
and information sharing within and among office and non-office work activities;
with office systems, groupware, and intranets providing the bonding glue. Firstly,
information and explicit knowledge components must be stored online, indexed
and mapped, so people can see what is available and can find it (e.g. using digi-
tally stored documents or yellow pages). Secondly, communication among people
needs to be supported, by assisting in the use of best practices to guide future
behavior and enable sharing of ideas (e.g. emails, bulletin boards, or discussion
databases). Thirdly, tacit knowledge needs to be captured using for instance com-
munities of practice, interest groups, or competency centers (e.g. groupware and
electronic whiteboards). Lastly, methods are required that offer a virtual space in
which a team can collaborate interactively, irrespective of geographic distribution
of the team members or time.

We designed and implemented a web-based knowledge sharing portal along
these lines: EAGLE – an Environment for Architects to Gain and Leverage Exper-
tise [114]. A second implementation of EAGLE used an Enterprise wiki environ-
ment for storing and managing both architectural knowledge and non-architectural
knowledge [116]. A screenshot of this wiki is depicted in Fig. 8.2.

Fig. 8.2 Screenshot of architectural knowledge wiki
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To support architectural knowledge codification, parts of the wiki were filled
with reusable architectural principles and rules (one per wiki page), after which an
overview page was generated using a table of contents plugin. The same approach
has been used for codifying architectural knowledge concerned with architectural
technologies and patterns. To support architectural knowledge personalization, the
wiki offers discussion facilities, the ability to send notifications to subscribed
knowledge, and personal pages for all wiki users to mimic a ‘yellow pages’ system.

By working closely together with RFA, over the past few years we have acquired
substantial insight in what architects really do, what kind of architectural knowledge
needs they have, and how they can be motivated and supported in sharing this knowl-
edge. The tooling discussed above is a first step in making the life of architects a bit
easier, but should not be regarded as a silver bullet. In order to further improve the
state-of-the-practice, we plan to conduct more empirical research on how architects
can best be supported in managing and sharing architectural knowledge.

8.4 Discovering Architectural Knowledge

The research within RDB, an SME performing independent software product audits
for third parties, started from a very real problem: how to find and comprehend the
architectural knowledge that resides in software product documentation [45]. This in
turn led to investigating further “ontological” problems: how is architectural knowl-
edge, in particular design decisions, related to evaluation criteria that auditors use
when searching for relevant information. We noted a remarkable similarity between
architectural decisions and requirements [46].

Auditors have three major questions regarding software product documentation
and the architectural knowledge contained in it. These three questions are:

1. Where should I start reading?
2. Which documents should I consult for more information on a particular architec-

tural topic?
3. How should I progress reading? In other words, what is a useful ’route’ through

the documentation to gain a sufficient level of architectural knowledge?

Auditors who perform a software product audit would greatly benefit from tools and
techniques that can direct them to relevant architectural knowledge. We refer to the
goal of such tools and techniques as ‘Architectural Knowledge Discovery’. A core
capability of Architectural Knowledge Discovery is the ability to grasp the semantic
structure, or meaning, of the software product documentation. Employing this struc-
ture transforms the set of individual texts into a collection that contains architectural
knowledge elements and the intrinsic relations between them. A technique we de-
ployed to support the discovery of directions to relevant architectural knowledge is
Latent Semantic Analysis (LSA) [205].

In [45], we describe the application of LSA to an example audit case involving 80
documents. The case concerns the reconstruction of the early phase of the software
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product audit, in which the auditors need to attain a global understanding of the
software product in order to further assess its quality.

In general, when auditors commence a software product audit they want to gain
an initial, high-level understanding of the software product. This global understand-
ing is necessary to successfully perform the audit, since it is a prerequisite for
subsequent audit activities. For instance, in scenario analyses the supplier of the
software product is asked how the product reacts to certain change scenarios or fail-
ure scenarios. In order to judge the answer the supplier provides, an auditor needs
to have a thorough understanding of the software product. Otherwise, the supplier
might provide an answer that is incomplete or inconsistent with the real state of the
product, without this being noticed.

Auditors who want to attain overall comprehension of the software product can
be guided through the documentation using the semantic structure discovered by
LSA. A route that is preferred by all auditors we interviewed is to start with high-
level, global information and gradually descend to texts that contain more detailed
and fine-grained information. A single term that can be expected to cover the high-
level information about the software product well is the term ‘architecture’. By using
LSA in combination with ‘architecture’ as the term of interest, we were able to iden-
tify a 2-page fact sheet that contained a condensed architectural overview, without
ever using the word ‘architecture’ itself.

Since we were investigating the use and findability of architectural knowledge in
quality audits, it was almost inevitable that we ran into the question of the nature of
architectural knowledge in this context. A quality audit is different from a ‘normal’
forward-engineering situation in that auditors will form an opinion about the actual
state of the software product and compare that with their opinion on what this state
should be. It became obvious to us that in this way auditors take ‘virtual’ architec-
tural decisions which they compare with the actual architectural decisions taken for
the software product.

Since the auditor’s virtual architectural decisions form a baseline for compari-
son, they are often referred to as evaluation criteria. Given their status as things that
should be present, one could alternatively refer to them as (architectural) require-
ments, albeit requirements with a different origin than the client. This, in turn, led to
a more general investigation of the relation between requirements and architecture.

Although many would agree that there is some relation between architecture and
requirements, the conventional view is that requirements and architecture belong to
different domains. From our investigation, we believe that this view may be false.
That, metaphorically speaking, architecturally significant requirements and archi-
tectural design decisions accumulate in some kind of a ‘magic well’. Observers
peering into the well see what they wish for. People wishing to find architecturally
significant requirements will see architecturally significant requirements; people
looking for architectural design decisions will find architectural design decisions.

Currently, the challenges in requirements management and architecture knowl-
edge management are approached as if there are two separate ‘information wells’.
Both communities perform research on comparable challenges without paying
too much attention to what the others are doing. A focus on architectural design
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decisions provides an opportunity to recognize and acknowledge that both commu-
nities are in fact looking at the same ‘magic well’ from different angles, we open
the door for tighter collaboration between the fields as well as reuse of each other’s
research results. We see great potential value in further exploring and exploiting the
commonalities between architecturally significant requirements and architectural
design decisions to enhance support for requirements management and architecture
knowledge management alike.

One of the areas in which architecture knowledge management and requirements
management meet is in decision support for evaluation criteria selection. We cod-
ified RDB’s evaluation criteria in a structure derived from the ontology of design
decisions of Philippe Kruchten [190], our own work [44], and a collection of in-
formally defined quality criteria within RDB. The resulting quality ontology can
be used to construct an “audit project memory”. Such a memory supports reuse of
those evaluation criteria in different quality audits. From these codified criteria, new
knowledge can be discovered, e.g. through data mining techniques. We are currently
implementing a prototype system of an audit project memory that aids authors in
their decision making process of including or excluding certain quality criteria in a
particular audit.

8.5 Compliance with Architectural Knowledge in Distributed
Settings

Nowadays, software development occurs more often in geographically distributed
locations. Our research at VCL showed that architectural knowledge may be de-
ployed to overcome some of the challenges that are experienced in global software
development. Different fragments of architectural knowledge can be shared across
different development sites to effect this. A first case study showed that thorough
verification of compliance with these fragments is necessary to allow the knowl-
edge to sink in properly at the different development sites [77]. Next, we compared
the results obtained at VCL with an organization that has adhered to an alternative
strategy for communicating architectural knowledge to the development sites [77].
The differences experienced have led us to develop a set of practices to effectively
introduce architecture knowledge management in distributed settings [75].

The VCL organization is a distributed software development organization for a
series of consumer electronics products. The development organization is located
at seven sites spread across the globe. Each site has a number of subsystem teams
allocated to it that are in charge of developing the subsystem’s functionality re-
quired for the end products. A central team of architects located at a single site
maintains the software architecture and addresses subsystem-exceeding issues like
configuration management, subsystem interdependencies, and naming conventions
of the various software artifacts. Solutions to these subsystem-exceeding issues were
addressed by a set of architectural rules that need to be complied with through-
out the organization. The organization, however, found the rules to be formulated
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too abstract and did not always understand these rules. We studied the organiza-
tion to identify reasons for these problems. Our research, described in [77], learned
that root cause of these problems was not the description of the rules, but the pro-
cess by which these rules were developed and subsequently communicated across
the development sites. The major improvements included ongoing communica-
tion between the central team and the various development sites, implementing
compliance verification and explicitly registering deviations from the architectural
rules.

To further substantiate these results, we next researched the contribution of ar-
chitectural knowledge (architectural rules in particular) to overcome the challenges
experienced in global software development. We compared VCL with another or-
ganization (ABC) involved in global software development. Whereas VCL focuses
on the formulation of rules pertaining to the architecture of the product, ABC fo-
cuses on rules and measures regarding the architecture process. Our research showed
that some of the challenges of global software development cannot be addressed
by product-based rules alone. In addition, measures in the process are necessary to
overcome cultural and team-collaboration challenges experienced in global software
development [77].

Reflecting on the research performed and the literature on global software de-
velopment, we concluded that, based on the differences that exist, there is no
one-size-fits-all software development process that addresses all challenges involved
in global software development. Consequently, we shifted our focus towards the
identification of a set of practices related to the management of architectural knowl-
edge to overcome specific issues. These practices can be incorporated in existing
software development methodologies.

We collected a set of practices [75], and characterized these practices by, among
others, determining the strategy towards knowledge management supported by
these practices (i.e., a personalization strategy or a codification strategy, follow-
ing [143, 92]). Examples of practices include frequent traveling of key individuals,
conducting a shared kick-off meeting in which principles of the software architec-
ture are exchanged, and different forms of frequent communication across develop-
ment sites. We performed a large-scale validation of these practices at an industrial
partner that joined the GRIFFIN project (VCL2). This organization has a number
of software development centers at different locations and focuses on improving its
capabilities by using architecture knowledge management efficiently across these
locations. For the validation, we conducted a large empirical study aimed at estab-
lishing a baseline of the current architecting practice. As a part of this case study
we validated our set of practices for architecture knowledge management with the
architects of VCL2. We learned, among others, that practices that focus on a per-
sonalization strategy for architecture knowledge management are preferred over
practices that support a codification strategy.

In future research, we intend to augment these practices by delving architec-
ture knowledge management practices from a series of global software development
projects on which independent software products audits have been performed.
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8.6 Tracing Architectural Knowledge

The research within PAV is concentrated on the traceability between different
entities of AK. PAV designs and builds large scientific instruments that advance sig-
nificantly beyond the state of the art. The unique characteristic of this domain, is that
these sizeable and complicated systems are often designed during a whole decade
before they are actually built. During this long design period, extensive design space
exploration takes place where design problems lead to multiple design alternatives
with particularly complex trade-offs involved. This exploration takes many differ-
ent forms: the development and evaluation of (small scale) real world prototypes,
quantitative prediction models, and coarse-grained qualitative evaluations. Hence,
during this exploration a fairly large amount of AK is created.

In the beginning of the project, PAV posed two research questions that concerned
the design exploration:

• How can architectural analysis become more transparent? In practice, architecture
analysis remained to a large extent a “black art” within PAV, since the various
analysts possessed very deep and specialized AK that was hardly shared and
understood by the rest.

• How are architectural documents related? The sheer volume of documents pro-
duced during the design exploration phase rendered the relationships between the
document contents practically impossible to locate.

At first glance, providing traceability addresses both these questions. Firstly, trace-
ability should make architectural analysis more transparent by offering an explicit
traceable reasoning path between the different analysis models. Secondly, provid-
ing traceability both within and between documents makes relationships between
documents explicit. This is very much in line with the knowledge management per-
spective, which requires to make both the knowledge entities and their relationships
explicit.

We have come up with an approach towards AK traceability that is based on
codifying AK and particularly emphasizes the relationships. The approach, called
the Knowledge Architect, consists of a method and a supporting tool suite. The
method consists of the following six different activities:

1. Identify knowledge management issues. In this activity, we identify the deeper
AK management issues an organization is facing. In the case of PAV, the need of
making the architectural analysis more transparent is derived from the fact that
current analysis results are not widely understandable. The need of knowing how
architectural documents relate comes from the issue that PAV is uncertain with
respect to the maturity of its design, i.e. is the design complete, consistent, and
correct enough to be built and fulfill the requirements?

2. Derive a domain model. This activity aims at identifying the actual AK entities
that can help in dealing with the issues mentioned in the aforementioned activity.
We formalize this knowledge with the help of ontologies [18]. For PAV, this
means that we identify what AK is important to know and to relate for making a
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quantitative analysis transparent (see [164] for an in-depth description), and for
inter-relating architecture documents (see [160]). In both cases emphasis is put
on making this knowledge traceable.

3. Capture AK. Once the AK and its relationships are made explicit, we capture
this AK using a codification approach, thereby creating the missing traceability.
The supporting tool suite offers several tools that use the ontology of the derived
model to assist a stakeholder with capturing relevant AK. To decrease the bur-
den on the stakeholders, these tools are integrated in a non-intrusive way with
the tools in which the AK is created and also provide some automated support.
For quantitative analysis, we have developed two analysis model tools, one for
Python, and one for Excel [164]. We have applied and validated these two tools
during architecture analysis at PAV concerning performance and cost models. For
relating documents, the suite incorporates the Document Knowledge Client, a
plug-in for Microsoft Word [160]. Similarly, we have applied this plug-in on soft-
ware architecture document and validated it within the purpose of architecture
evaluation activities.

4. Use AK. Once the AK and its relationships have become explicit and therefore
traceable, it may be used to address the identified knowledge management issues
identified in the first activity. Typically, this involves specialized visualizations
to highlight concrete issues. For example, the Document Knowledge Client can
colour pieces of text in a document that require further elaboration, when the AK
is incomplete, inconsistent, or incorrect. Another example are the dependency
graphs rendered by the analysis model tools that allows system analysts in PAV to
identify the inter-dependencies between the system parameters of their analysis
models that influence the design space.

5. Integrate AK. Typically, AK is described in various forms and is captured by
different tools. To have a complete perspective on the software architecture, the
Knowledge Architect uses a central AK repository to integrate the AK of various
knowledge sources, e.g. Word, Excel, Python, Excel, etc. Since AK might come
from different organizations, each having their own specific domain model, this
repository supports ontology mappings. Using these mappings, the AK of dif-
ferent sources can be integrated to form a single overall traceable picture of the
architecture. We have developed various models to predict the quality and costs
of such mappings (see [206, 207]).

6. Evolve AK. AK constantly evolves over the life-time of a system and this evolu-
tion also needs to be explicit. The Knowledge Architect tool suite supports the
documentation of the AK evolution in two ways. Firstly, the central AK reposi-
tory offers versioning of the AK in the central AK repository, thereby making the
history of AK traceable. Secondly, the repository will be integrated with a SCM
to have a traceable co-evolution with the artifacts the AK originates from.

In the future, we want to explore two activities in more depth: evolving and integrat-
ing AK. Firstly, we would like to investigate in real life cases how the AK evolves
over time. Can we perhaps identify patterns in this evolution and strategies to deal
with this evolution? Secondly, regarding AK integration, we would like to know to
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what extent and under which conditions our predictions of the cost and quality of
AK integration hold.

8.7 The GRIFFIN Grid

The core model of architectural knowledge can be used as a common vocab-
ulary for different organizations. Each organization typically develops its own
terminology, defined through the years to reflect its business domain, background,
know-how and organizational culture. In GRIFFIN, this local vocabulary is called
shell [44].

When different organizations collaborate, it is especially difficult (and time
consuming) to understand one another. Imagine to share artifacts and documents
expressed according to different terminologies. At the same time, it would be unre-
alistic for companies to aim at reaching a consensus on one, common terminology,
and translate the pre-existing documents accordingly. The GRIFFIN approach is to
keep the architectural knowledge expressed in the own terminology of an organiza-
tion (i.e. according to the shell vocabulary) and refer to a shared standard mapping
similar concepts. The core model for architectural knowledge can act as “esperanto”
to define the mapping between different shells.

Within GRIFFIN, we envision a virtual and distributed community of collaborat-
ing organizations and professionals willing to create and share architectural knowl-
edge. Such a virtual community is meant to support a community of professionals
(software architects) to effectively carry out their daily work and further contribute
to (and learn from) the community with its own (architectural) knowledge. A com-
bination of strategies for knowledge codification and personalization should provide
each individual with the necessary flexibility, to fit in the own working practice and
to provide sufficient incentives for successful AK management.

As illustrated in [196], organizations can share AK in a grid-like configuration of
connected sites where employees carry out collaborative activities. Software archi-
tects can work in their virtual space where they can manage their own architectural
knowledge and eventually share part of this knowledge with (remote) counterparts
in a collaborative social network of professionals.

From a service integration perspective, the core model can be the means to
integrate the services that a grid infrastructure may provide [44]. These services
may “speak the same language” by exchanging data expressed in concepts from
the core model. For instance, the AK codified in the EAGLE portal presented in
Sect. 8.3 could be made accessible to other grid partners, and mapped (through
the core models) on the AK terms according to their own shell terminology. In
a similar way, any of the use cases illustrated in Sect. 8.2.2 can be implemented
as a service, and share and exchange data integrated via the core model. In this
way, the core model, being shared among multiple sites, realizes a more generic
infrastructure.



www.manaraa.com

154 H. van Vliet et al.

8.8 Summary

In the GRIFFIN project, we have carried out a number of case studies within partic-
ipating industries. The close collaboration between research and industry has given
us a number of important insights in what works and what doesn’t in software
architecture knowledge management:

• Different industrial domains have different knowledge models, and we need an
infrastructure that deals with that.

• Software architects are not likely to (extensively) codify their knowledge of and
by themselves.

• Effective software architecture knowledge management follows a hybrid knowl-
edge management strategy.

• Software architecture knowledge management needs support of lightweight, just-
in-time, tools.

It is an illusion to try to coerce different organizations, or even different groups
within the same organization, into adopting the same domain structure and termi-
nology. Our core model, as discussed in Sect. 8.2.1 can act as an “esperanto” to
allow for a mapping between different local vocabularies. This core model can then
be used to share architectural knowledge in a grid-like configuration.

Software architects are busy people. It is their job to find, negotiate, and imple-
ment solutions. It is not their job to codify knowledge. At best, we may expect them
to partially codify their knowledge. If we deem it important to support software ar-
chitects in the management of their knowledge, such support of necessity has to be
able to deal with incomplete information, such as a design decision without a ratio-
nale, or a decision topic with a very incomplete set of design alternatives. To stretch
the idea even further, it would be advantageous to be able to mine architectural
knowledge from “normal” artifacts produced by architects.

Many knowledge management initiatives start with the idea to codify knowledge.
We did too, and learned that this is not the best way to go. Part of the knowledge
of software architects will remain tacit, and in circumstances we must be able to
find the right person, instead of the right document. Software architecture knowl-
edge management therefore should follow a hybrid strategy, incorporating both
codification and personalization.

Finally, software architecture knowledge management can successfully be sup-
ported by a wide variety of tools. In order to be used at all, these tools should be easy
to learn, and fit the daily practice of the architects. If such tools have a steep learning
curve, they are not likely to be used. Since architects are already overwhelmed with
information, the tools should lead them to the right information at the right time.
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Chapter 9
Software Architecture Design Reasoning

Antony Tang and Hans van Vliet

Abstract Despite recent advancements in software architecture knowledge manage-
ment and design rationale modeling, industrial practice is behind in adopting these
methods. The lack of empirical proofs and the lack of a practical process that can
be easily incorporated by practitioners are some of the hindrance for adoptions. In
particular, the process to support systematic design reasoning is not available. To
rectify this issue, we propose a design reasoning process to help architects cope
with an architectural design environment where design concerns are cross-cutting
and diversified. We use an industrial case study to validate that the design reasoning
process can help improve the quality of software architecture design. The results
have indicated that associating design concerns and identifying design options are
important steps in design reasoning.

9.1 Introduction

Software architects make a series of design decisions when designing system archi-
tecture. Despite the need to make correct architectural design decisions, architects
often omit to provide design rationale or justifications for their design decisions.
Software architects instead focus on creating design outcomes. Presently there are
no commonly accepted practices in the industry to carry out systematic design rea-
soning, architects often rely on their experience and intuition when making design
decisions. Such an unstructured decision making approach has certain implications
on design quality, experienced architects are more likely to make better design deci-
sions. On the other hand, inexperienced designers may not design as well. This case
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study illustrates a methodology to overcome the ad hoc practice of architectural
design decision making and to improve the quality of software architecture design.

In general, practitioners learn software architecture design principles through
textbooks and formal training, exercising these design principles in practice often
requires knowledge and experience that is mostly learned on the job. Software de-
sign knowledge and experience are difficult to teach and articulate. Recent studies
have shown that such knowledge is design rationale related [48, 71]. Design ratio-
nale can be characterized in two ways (1) they are the reasons for making a decision
and choosing a solution, and (2) explaining the relationships between a solution and
the context of that solution. By externalizing design reasoning, it is aimed to im-
prove decision making and to capture documented evidence for design verification
and system maintenance.

In this chapter we explain the basic elements in architectural design reasoning.
We demonstrate the modeling of these elements in a UML-based model called Ar-
chitecture Rationale and Elements Linkage (AREL) in Sect. 9.3. In Sect. 9.4, we
describe a design reasoning process to support software architectural design activi-
ties. In Sect. 9.5, we describe an industrial case that demonstrates how a reasoning
process can improve the quality of an architectural design.

9.2 Software Architecture Design Reasoning

In software architecture design, architects apply cognitive reasoning even though
they may not think about it consciously. An understanding of such a reasoning pro-
cess can be quite helpful to delivering good design. Designers’ judgment can be
inadvertently biased due to personal preferences and past experiences. This situa-
tion is quite common and it may have an adverse effect on the quality of a design.
However, many systems have been built quite successfully without the explicit em-
ployment of design reasoning methods, why? This may be due to the involvement
of experienced people. Successful projects often rely on people with experience and
good judgment. Some IT professionals seem to have an uncanny way of foreseeing
problems, formulating solutions and making just the right decisions consistently.
On the contrary, there are practitioners who design poorly, they over-engineer a
solution, underestimate the effort, miss out key requirements, select the wrong tech-
nologies and deliver poor quality design. The challenge is how to systematically
improve the reasoning abilities of designers to consistently deliver a satisfactory
design, and to improve the quality-assurance process of architecture design.

In a study that examines if design reasoning techniques make any difference to
design quality [318], test participants in the experiment were given a simple reason-
ing process, they were asked to use this process and verbally explain their design
reasoning as they designed. As a result they generally produced a higher quality
design, especially those who were less experienced could produce designs similar
to those by experienced designers. The study shows that those who were required
to externalize their design reasoning were probably more careful and methodical in
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designing their solutions. This contrasts with the participants of the control group
who largely used intuition and knowledge to design. The control group’s objec-
tive was to complete the design and satisfy the requirements without having to
justify them. Other studies have also shown that design rationale documentation
helps designers understand and reason about their design [51, 171].

A well-designed architecture should be justifiable through sound and logical
design rationale. The design reasoning process ought to consider all relevant ar-
chitecture requirements, address the design issues, consider trade-offs between the
design options before deciding on the outcomes. The explicit representation of
this tacit knowledge serves many purposes in the development life cycle such as
review and maintenance. Table 9.1 summarizes the purposes for having such a
rationale-based architectural design approach.

Back in 1958, it was suggested that argumentation could be used to induce con-
clusions from contextual data [323]. This approach explicitly represents the design
deliberation process. One of the characteristics is that they model as links the rela-
tionships between design goals and design results. Examples include Issue-Based
Information System (IBIS), Decision Representation Language (DRL), and Ques-
tions, Options and Criteria (QOC) [228]. Unfortunately, these methods have not
been successful in practice because of their difficulties in capturing and communi-
cating design rationale [298, 200].

Another approach is to use templates to aid design reasoning capture, including
[71] and [325]. Such an approach is beginning to receive attention in the indus-
try as practitioners recognize the importance of recording design reasoning. UML
CASE tools such as Rational Rose and Enterprise Architect1 provide some easy-
to-use facilities to capture design rationale. Although template-based methods can
capture design rationale, they provide limited support to relate the contexts of design
decisions.

In order to make design reasoning easy to adopt by software development orga-
nizations without losing the design reasoning capabilities of argumentation-based
methods, we have developed AREL as a hybrid approach that incorporates de-
sign rationale template and design reasoning relationships based on these previous
works [71, 228, 325]. AREL has been designed to capture useful design reasoning
information with minimal documentation overheads.

9.3 Modeling Architecture Design Reasoning

What exactly is design reasoning? Is it a reason for having a system or is it some
justifications on how a system is designed? First of all, let us consider a simple
reasoning model that comprises of three elements: inputs–decisions–outputs. The
inputs are the requirements and goals that need to be met by a system; the deci-
sions are the decisions made in designing the system; the outputs are the results of

1 Design rationale support in Enterprise Architect is implemented using the AREL plug-in tools.
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Table 9.1 Purposes for having a rationale-based architectural design approach

Support Software Architecture Design
Deliberating and Negotiating Design – design rationale allows designers to systematically

clarify the issues and possible solutions, and to evaluate decisions against well-defined
criteria. As such, it allows designers and stakeholders to deliberate and negotiate a
solution

Justifying Design Decisions – design rationale can explicate tacit assumptions, clarify
dependencies and constraints, and help justify why a particular choice is selected from
amongst the alternatives

Applying Trade-off Analysis – a design decision often involves resolving conflicting
requirements that cannot be fully satisfied simultaneously. When trade-off analysis
method such as ATAM [34] is applied, the prioritized requirements and utility tree form
the reasoning of the compromised decision

Structured Design Process – design rationale supports a structured and accountable design
practice. It provides a pertinent understanding of the context, the stakeholders, the
technologies and the situations in a project

Design Validation – design rationale explains why certain design decisions have been made,
and provides the necessary information for independent architecture design validation and
review

Communication and Knowledge Transfer – design rationale can help business analysts
evaluate conflicting requirements and new designers learn the architecture design

Support Maintenance Activities

Retaining Knowledge – if system maintainers are not the same people who originally
developed the system and the design rationale is not available, maintainers would have to
second-guess the intangible rationale

Understanding Previous Design Alternatives – design alternatives can help maintainers
appreciate what choices had been considered in a decision. They help maintainers to
understand design options that were considered unviable or allow them to consider an
alternative that was not viable at the time but can now be used

Understanding Design Dependency – design decisions can be interdependent and cut across
a number of issues. Changing a decision may have ripple effects on other parts of a
system. Recording design rationale and their interdependency helps alleviate the concern
of overlooking related issues

Improving Maintenance Productivity – in an experiment, it was shown that a group of
designers equipped with the design rationale can work faster and identify more changes
that are required in a system maintenance exercise than a control group without the design
rationale [51]

Predicting Change Impact – design rationale could assist maintainers to predict which part
of the system is subject to consequential change [317]

Providing Traceability – maintainers would be able to trace how design artifacts satisfy
requirements in a system with some explanation [259]

the design. Without the inputs, we would miss out on the contextual information
that tells us why we need the design. Without the design decisions, we may not
understand the justifications or reasons for choosing a design. Therefore, in model-
ing design reasoning, we need to depict the causal relationships between the design
inputs, design decisions and design outputs. We suggest that this relationship is a
simple causal relationship between the causes of a design and the effects of a design.
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In this way, design reasoning is modeled by a description of the design context, the
design justification, the design outcome and their causal relationships.

IEEE-1471-2000 specifies that architectural rationale should provide the evi-
dence for the consideration of alternative architectural concepts and the rationale
for the choices made. It is a general guideline that does not provide much detail
to help implement a design reasoning model. In a discussion session on updating
IEEE-1471, some refinements have been suggested to overcome this issue [23].

AREL captures both the design rationale and the design model, which is real-
ized through a UML tool, Enterprise Architect (EA). The design model includes
architecturally significant requirements and the actual architecture design. AREL
supports the association between the design model and the design rationale of its
design decisions. The AREL model is based on the reasoning model described ear-
lier: (a) design concerns raise a design decision, (b) design decision captures design
issues and design rationale; (c) the design outcomes are the results of a design
decision.

Figure 9.1 shows the conceptual model of AREL. Design concerns such as re-
quirements cause the need for design decisions to be made. When a design decision
is made, it is justified by its design rationale. To make a design decision, differ-
ent design options may be considered, these alternative designs can help architects
consider their relative pros and cons. When a design decision is finally made, there
would be a chosen design and may be some alternative designs. Alternative de-
signs are those design options that have been considered but discarded. Alternative
designs are important because they are evidence to show that the designers have
considered more than one design options before making a design decision, they also
show the reasons why these alternatives are not as appropriate as the chosen design.

A chosen design element is a UML entity to model the design, e.g. class, com-
ponent or database table. Each design element can influence other parts of a system
due to its behavior or constraints. These design elements will in turn become design
concerns that influence other parts of a design. For instance, using AJAX to con-
struct web pages creates a consequential issue of having to handle the web browser’s
BACK button. AJAX being part of the solution space therefore becomes a part of the
problem space, i.e. a new design concern. Such design consequences could trigger
a chain of interdependent designs and design decisions.

Design Concerns
Design Decision Design Options

Chosen
Design

Alternative
Design

Attribute: Design
constraint

Fig. 9.1 A conceptual model of design reasoning in AREL
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Table 9.2 Types of design concern

Purposes and goals – the business goals of a system
Functional Requirements – functional goals of a system
Non-Functional Requirements – quality attributes that a system must fulfill, e.g. performance

and usability
Business Environment – organization and business environmental factors that influence

architecture design, e.g. long-term or strategic organization goals
Information System (IS) Environment – environmental factors that influence the construction

and implementation of the system, e.g. budget, schedule and expertise
Technology (IT) Environment – technological factors that influence the architecture,

e.g. current organizational technologies and policies
Design – a chosen design (outcome) has some influence on the rest of the architecture,

e.g. the selection of an operating system constrains the choice of the development tools

9.3.1 Design Concern

Capturing the causes of a design decision is vital to comprehending the reasons
of a design. The inputs that are the causes or motivations of a decision are design
concerns. Design concerns represent the context of a design. They can be anything
that influences the design decision. Functional and non-functional requirements are
examples of design concerns. There are, however, many design concerns that are
often omitted even though they play a significant role in software architecture.

There are different types of design concerns (see Table 9.2) and they influence
decisions in different ways. Requirements drive and motivate the creation of de-
signs. Purposes and goals provide a context to guide the design. Environmental
factors constrain the available choices of an architecture design. In a case where
an architect designs a B2B website, examples of the environmental design concerns
could be (a) business environment – outsourcing of a system has implications on the
maintainability and support requirements; (b) IS environment – time to market is 3
months; (c) IT environment – organisation standards to use ASP.Net and Oracle.

These design concerns exert constraints or influence on design decisions and the
eventual architectural design. A design constraint is a limiting factor which specifies
the conditions that a viable design solution must fulfill, e.g. the performance of a
database engine. As design constraints are important to design decisions, architects
must recognise them and ensure that they can be satisfied by the architecture design.

9.3.2 Design Decision

Design decisions can sometimes be made without applying any systematic reason-
ing or documenting their justifications. Making appropriate design decisions by
intuition relies on the abilities and experience of the designer; making design deci-
sions through systematic reasoning, on the other hand, requires explicit justification
using design rationale. Documenting design rationale for the entire system can be
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Table 9.3 Architecture design rationale

Qualitative design rationale
Design Issue – the issue to be dealt with in a decision
Design Assumptions – document the assumptions that are made in a decision
Design Constraints – document the constraints on a decision that can be of a technical or

contextual nature
Strengths and Weaknesses – state the strengths or weaknesses of a design option
Trade-offs – document a balanced analysis of what is an appropriate option after prioritizing

and weighing different design options
Risks and Non-risks – document the considerations about the uncertainties or certainties of a

design option

Quantitative design rationale

Cost – quantifies the relative cost in areas such as development efforts, platform support,
maintenance cost and other intangible costs such as potential legal liabilities

Benefit – quantifies how well a design option may satisfy the requirements and the quality
attributes

Implementation Risk – represents the risk that a development team may not implement the
design successfully due to reasons such as the lack of capability or experience

Outcome Certainty Risk – represents the risk that a design may not satisfy the requirements
because they are technically unachievable or not well-defined

very costly and probably unnecessary, and so we focus on architectural issues that
are often complex, intertwining and require much investigation.

Design rationale is the reasons for choosing a particular design from a range
of alternatives at a decision point. To do so, we must first articulate the design is-
sues to resolve. An issue may simply be designing to satisfy some design concerns.
For instance, what data do I need to show in the user interface? More often than
not in architectural design, issues are more complicated because of conflicting and
competing influences from different design concerns such as quality requirements.
For instance, how do I retrieve the data securely and maintain system performance?
There may be more than one possible solution. Design rationale therefore helps
the reasoning process and captures the justifications for selecting a solution. It ex-
plains why a design is better than the other alternatives. AREL uses qualitative and
quantitative design rationale to capture such justifications (see Table 9.3).

Qualitative design rationale supports design reasoning by way of arguments.
Architects may document the justifications of a decision by arguing the relative ad-
vantages and disadvantages of different design options, or using a trade-off analysis
method such as ATAM [34]. Quantitative design rationale records the relative costs,
benefits and risks of a design option using ordinal numbers, between 1 (the lowest)
and 10 (the highest). The main reasons for capturing quantitative rationale are to
allow a quantifiable comparison between alternative design options, and enable ar-
chitects to highlight risky or costly decisions that need to be investigated further. For
example, if the implementation risk is high, architects may continue to decompose
the architecture through a series of decisions until the risk becomes manageable
[315].
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9.3.3 Design Outcome

The result of a design decision would be some chosen designs that are a part of
the total solution. This chosen design either realizes the requirements of a system,
or it provides some design structures that are used in realizing the requirements.
The design outcomes can be any design artifacts, example are architectural model,
database models, design components and classes.

A chosen design outcome may influence another part of a solution and as such it
becomes a design concern to a new decision, as we have seen in the AJAX example
earlier. Since a design outcome can associate with other decisions through the causal
relationship, it is possible to have a graph that consists of a chain of relationships
that connect design concerns, decisions and design outcomes.

9.4 An Architectural Design Reasoning Process

AREL is a model which defines the information used in design reasoning, it un-
derpins the software architecture design reasoning process described here. Design
methods such as the waterfall method, iterative method or agile method focus on
the organization of events and teams in software development; technology based
methods such as object-oriented analysis and design focus on modeling techniques
that produce specific design artifacts. A reasoning based design method, however,
has a different perspective – the focus is on using reasoning to create and justify
design decisions made for architectural design. The considerations used in a design
reasoning approach are therefore broader and not just focusing to producing de-
sign artifacts. The design reasoning approach is not meant to replace other design
methods, but rather it adds a new dimension to designing software architecture to
complement existing design methods.

The architectural life-cycle described by [146] comprises three distinct activities:
architectural analysis, architectural synthesis and architectural evaluation. Archi-
tectural synthesis is the design activity in this architectural life-cycle. The design
reasoning process described in this chapter primarily addresses the architectural syn-
thesis activity but it also covers architectural analysis and evaluation. The shaded
area in Fig. 9.2a shows the scope of the design reasoning process with respect to
the architectural activities described in [146]. The architectural design reasoning
process spans across architectural synthesis and the other activities because design
reasoning would involve analysis as well as evaluation.

Chapter 1 describes architectural design as a problem-solving activity, the design
workflow consists of three activities: requirements gathering, backlog creation and
design evaluation. Creating backlog is an important activity in which architects ar-
ticulate what design problems are there to be solved. It requires design context and
requirements as inputs for defining the design problems in the backlog. All three
activities require design reasoning support (shaded area in Fig. 9.2b).
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(a)

(b)

Fig. 9.2 (a) and (b) Design reasoning coverage at two levels of architectural design

Design is a cognitive activity that requires the architects to organize, induce and
assimilate different kinds of information. Early work has indicated that this cog-
nitive process can differ between architects where experienced architects generally
use a better design approach, and therefore yielding better results [318]. As such, it
would be advantageous to investigate into design reasoning strategies, making them
explicit so that there is a systematic approach to considering design problems. A
conceptual model for design decision has been suggested by [162] where they de-
scribe the architecting process, however key activities that are required to support
this model have not been articulated.

In order to address the design reasoning gap in software architecture, our starting
point is to make use of the causal relationships between design concerns, design
decisions and design outcomes. We suggest to take five steps in the design reasoning
process. The five steps (i.e. step 1–5) are depicted by the numbered arrows between
the entities (Fig. 9.3). The arrows indicate the design reasoning steps, and they can
be repeated for a design. By connecting AREL entities that are causally related,
designers can trace the causes and effects of those design decisions. These 5 design
reasoning steps are performed repeatedly to decompose the design and create design
details, shown by the layers of decisions in Fig. 9.3.
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Fig. 9.3 A design reasoning process based on AREL

The results of the design reasoning process are captured, i.e. design decisions,
design rationale, design outcomes and their relationships. Figure 9.3 shows the
relationships between these entities in an AREL model.

1. Specifying Design Concerns. Business goals and Architectural Significant
Requirements (ASRs) are the basic inputs, we call them design concerns, to
the design reasoning process. We assume they are available to start the design
process. The elicitation and analysis of business goals and ASRs are the initial
step which analysts and designers achieve by using requirements engineering
methods [235, 142] and architectural analysis methods [176, 172].
Business goals and ASRs themselves reflect important architectural decisions
that have been made and these decisions would influence subsequent architec-
ture design [46], so should a design reasoning process be extended to deal with
ASRs? A clear delineation between requirement analysis and design can be dif-
ficult to define because they influence each other mutually. At a broad level,
specifying design concerns are different from synthesizing a design solution.
However, as seen in some architecture analysis methods [176, 173], architec-
tural design can compromise ASRs in order to create a workable solution. This
process is described in step 5.

2. Associating Design Concerns. Design decisions are made because architects
need to work out how to design for particular situations that arise from a com-
bination of design concerns. The idea is to consider relevant design concerns
in conjunction and finding a solution for them. This concept is similar to the
ideas of creating design topics in [44] or populating the backlog (Chap. 1). For
instance, to make a decision on how to design an authentication server, two
design concerns, i.e. security requirement and performance level, must be con-
sidered. If performance as a design concern is not associated to this decision,
one may end up having a design that addresses the security requirement with
poor performance.
This idea of grouping design concerns and relating them to a decision bears sim-
ilarities to eliciting use case scenarios where multiple requirements are involved
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[172], or eliciting architectural issues for design synthesis [85]. The graphical
modeling of the causal relationships between design concerns and design de-
cisions in AREL enables architects to visually relate them for inspection and
traceability. Current practice in the industry requires an architect to have the
knowledge and experience to associate related design concerns, and they often
do that from a set of textual specifications. It is therefore easy to omit a de-
sign issue where interrelated design concerns should be considered in a design
scenario.
How does one know that certain design concerns must be considered together
to form a design topic? This is essentially asking how an architect knows what
to design. There are two possibilities: Firstly, a software architect would have
certain basic knowledge and understanding of the design principles for associat-
ing related design concerns; secondly, architectural design knowledge can assist
architects by showing general design concern associations with design topics.
A design decision can trigger a chain of subsequent decisions, and typically it
is for deciding how to further design the system. For instance, the layering of
software components might be a high-level decision to group related compo-
nents together, and follow-on decisions are required to define common interfaces
between software layers.
So how deep should the design reasoning process go before an architect is satis-
fied? This is a question related to how much details is enough in an architectural
design to enable detailed design and development. We address this issue by em-
ploying a risk mitigation strategy. Architects are required to estimate the risk of
implementing a design. If the risk is low, it means that the architect is confident
that the design contains sufficient details, otherwise the architect needs to further
explore the design [315].

3. Identifying Design Options. An important aspect of design reasoning is to iden-
tify possible design options. This is a key step in synthesizing a design. It requires
an architect to have sufficient knowledge of the problem and certain creativity in
deriving potential solutions. This can come from understanding the relevant first
principles of design, having some design experience and so on.
In a study [318], it has been observed that architects and designers tend to bias
towards the first impression of a design. For participants who were involved in
a test procedure to use a design reasoning process, it has been observed that
they would modify their initial design after they consider alternative design op-
tions. On the other hand, designers who do not use a design reasoning process,
especially for the inexperienced designers, the first impression of a design usu-
ally becomes the final design. This observation implies that designers who can
identify and consider alternative design options can improve the design quality.

4. Evaluating Design Options. At each decision point, an architect would need to
choose which identified design options is best suited to meet all the related design
concerns and fulfilling the design constraints exerted by these design concerns.
There are a number of possible results from an evaluation: (a) there is no design
solution that can meet the relevant design concerns; (b) there is a single possible
solution; and (c) there are more than one possible design solutions. In case of (a),
certain trade-offs may have to take place to relax the constraints of the decision,



www.manaraa.com

166 A. Tang and H. van Vliet

different trade-off analysis methods could be employed [176, 3]. In case of (c),
an architect has to evaluate the pros and cons of the available options to choose
the best option.
In analyzing the pros and cons of different design options, a qualitative reasoning
approach may work quite well. The approach proposed in [325] employs differ-
ent types of design rationale as a guideline for architects to assess the weakness,
benefits and other aspect of a design.

5. Backtracking Decisions to Revise Design Concerns. Design decisions are often
interrelated, a software design decision often leads to a chain of subsequent de-
sign decisions. Subsequent design decisions have to be made because (a) the
initial design decision lacks design details and thus requires further elaborations;
(b) the initial design decision has created new design issues that need to be re-
solved. As interrelated design decisions are made, architects may find that the
eventual solution is not viable. Therefore previous design decisions have to be
revised and new decisions to be considered.
When no design solutions can be found at a decision point, the design concerns
that dictate the decision must be re-examined because of their causal relation-
ships. Each design concern constrains a design decision in some ways, when the
constraints cannot be satisfied by any solutions, then the decision is not viable.
A compromise can be reached if some of these constraints are relaxed. To do so,
architects can backtrack design decisions to relax their constraints.
If a design constraint comes from a requirement, architects would have to nego-
tiate with the relevant stakeholders in order to have them relaxed. If a design
constraint to be relaxed is itself a design outcome, then changing the design
outcome implies reconsidering all previous decisions that have led to this de-
sign outcome (see step 5 in Fig. 9.3). In this case, design reasoning backtracking
involves revisiting previous decisions and design constraints to ensure that the
design constraints of all related design concerns can be fulfilled.

The design reasoning process focuses on how to reason with a design. The key
steps in the design reasoning process are associating design concerns to decision
points, justifying each decision point, checking that all design constraints are met,
and backtracking to revise decisions if no viable solution is found. These simple
steps can be used in conjunction with other design methodologies.

9.5 Applying AREL to an Industrial Case Study

In an industrial case study, we apply the AREL model to a software development
project to see if a design reasoning process can improve design quality in compar-
ison with the conventional design process. A consulting and software development
firm had a contract to supply a document management system to a large company
in Australia. The system will provide document repository functionality, document
classification, knowledge search, workflow, single-sign-on and ubiquitous access fa-
cilities to this engineering firm. The design and implementation is phased, and in this
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Fig. 9.4 Research approach used in the case study

case study the architectural design for the system infrastructure and two application
systems are studied.

The consulting firm has a design team formed by architects and designers to
carry out requirement elicitation, architectural and software design. There were four
architects/designers in the design team. All of them have had many years of expe-
rience in the IT industry and at least 5 yrs. on document management applications.
The firm uses an internal development and documentation standard, and they also
have an internal and external review process. The development methodology can be
typified as structured analysis and design. The design team does not use any design
reasoning methods during design.

The research team consists of two researchers who work independently of the de-
sign team to analyze the information. The research team analyzes the specifications
prepared by the design team, these specifications include functional requirement
specification, architectural design specification, high-level design specification and
traceability matrix between requirements and designs. With the supplied documen-
tation, the research team constructed the AREL models using the design reasoning
process to reverse engineer the design decisions made. The design team then vali-
date the issues and questions raised by the design reasoning process with the design
team.

9.5.1 Analyze the Design by Reasoning

The researchers first examine the specifications, it has been observed that there is
very little documented design rationale. When they exist, they are buried within the
text of the specifications. The researchers then apply the reasoning process to reverse
engineer the design decisions. The researchers imported the summarized specifica-
tions into an AREL model. This was achieved by a custom developed software to
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FTR-01 Access to the
system will be provided
for external users.

ACC-01 Users can log in from any office,
site or using remote access tools and
have the same access as in their home
office according to IT policy.

Decision on Connectivity

Nodes::Hardware Load Balancer

Components:: DNS Server

<<Design Conflict>>

Constraints
-Client machine may use
a proxy server.

Constraints
-Client machine may use a proxy server.

Fulfilment
- supports single sign-on (SSO) for an intranet application.
- Supports SSO for internet Explorer 2 or later, may not work with
other browsers.

Fulfilment
- Hardware Load Balancer distributes requests to web servers by IP addresses.
- if using proxy server, all requests will go to a single web server.

- Hardware load balancer does not meet
the performance targets if external users
or remote users use a proxy server.

Decision on Performance

Design concern

Components:: Integrated Windows Authentication configured

Fig. 9.5 An example AREL decision diagram

scan the specifications and retrieve the requirements. The import process created the
design concerns and chosen designs as UML artifacts stereotyped by �architectural
elements�. The nodes in the model contain a unique identity and a brief description
of a requirement or a design component. There are a total of 419 design concerns,
consisting of 254 functional requirements, 77 non-functional requirements and 88
pieces of contextual information about the system. All of them were imported from
the specifications into the model. There are also a total of 86 design components.

Using the AREL model, the researchers carried out a reverse engineering exer-
cise to discover the design decisions. This is done by associating relevant design
concerns to a design decision (using reasoning step 2), and then find all the pos-
sible design outcomes that are affected by this decision (using reasoning step 3).
Using this process, the researchers hope to uncover the design reasoning and find
any design issues. The result was a series of AREL decision diagrams, an example
is shown in Fig. 9.5.

The example in Fig. 9.5 shows the requirements related to secured access to the
document management system. The researchers have associated the relevant re-
quirements to a design decision node (i.e. Decision on Connectivity). The design
concerns are: (FTR-01) access to the system will be provided to external users;
(ACC-01) users can log in from any office or from home using remote access tools;
Component to support integrated Windows Authentication Server; and performance
requirements. The decision to consider connectivity is to employ a hardware load
balancer to realize the design and to use a DNS server.

It was indicated in the specification that the hardware load balancer cannot sup-
port external proxy server connections because web accesses cannot be routed to the
right server if proxies are used. The design to use a load balancer is primarily for
the performance requirement. The design outcome obviously contradicted with the
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requirements where external users most likely would access through a proxy server.
This fundamental requirement cannot be satisfied by the existing hardware. More-
over, if the designers attempt to implement this unwittingly, the performance of the
web site would be adversely affected.

By associating the relevant requirements to the design outcomes, we can identify
the contradictions in the design because not all the design concerns can be fulfilled
by the design. Furthermore, inter-related design may conflict each other. If the load
balancer does not support connections through the proxy servers, then there is no
way to support external and internal users who access the system from home. This
design conflict was raised with the design team and the design team acknowledged
this oversight because they had not associated the external access requirement to the
load balancer design.

9.5.2 Applying Design Reasoning in the Case Study

The researchers analyzed the system by reverse engineering the design decisions
made to create the software architecture. Many cases of ambiguous design ra-
tionale were identified. These cases were then presented to the design team to
validate if they were real design issues, and all the findings were confirmed to be
valid. Through this exercise, it was shown that a systematic design reasoning pro-
cess would help architects to uncover design issues and achieve a better quality
architectural design.

Using the design reasoning approach, researchers have identified 83 issues, of
which 29 are ambiguous design concerns, eight issues related to designs that cannot
be fully justified through reasoning with the design concerns, and 46 issues that are
ambiguous description of design outcomes. With the identified design issues, we
analyze the likely causes of why they occur so that we have some insights on how
design reasoning may help to improve the situation. The following are cases where
design reasoning has uncovered architectural design issues. These cases represent
failures that could be avoided if design reasoning steps are taken.

1. Missing cross-cutting design Design concerns can cut-across different parts of
the software architecture. In the case study, there are many examples of not con-
sidering cross-cutting design concerns. These cross-cutting design concerns need
to be considered or associated together when designing because they affect each
other. An example from the case study is the missing association between user
authentication of internal and external users. Currently the company employs
an Active Directory to authenticate intranet users, this mechanism supports sin-
gle sign-on for software applications within the company. Single sign-on is a
company policy. However, the architects have omitted to associate this mecha-
nism to another future requirement (FUT-004-01), i.e. supporting external users’
login. When these two requirements are associated together, a new significant
architectural issue arises – “how to authenticate external users?”.
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When the architects were interviewed, they indicated that they had not really
considered this particular aspect. When the researchers discussed the possible
impacts of this omission, the architects then started to identify potential design
issues that can arise from it. There are two new design issues concerning security
policies, redefining user group privileges and access rights, and access control of
external users. The architects agreed that these newly discovered design issues
should be addressed. This example illustrates that missing associations of cross-
cutting design concerns can cause architectural significant design decisions to be
omitted. The likely reasons for such omission are because the system is inher-
ently complex, and system analysis and design is based on textual specifications
where minor details can be overlooked. Design reasoning step 2 (see Sect. 9.4)
can circumvent this problem by encouraging architects to consciously associate
related design concerns to identify new design issues.

2. Conflicting design concerns. When the researchers map the design concerns or
requirements to the AREL model, it has been found that some design concerns
cannot be realized by the current design because they conflict with each other.
Architects did not realize that interrelated design concerns should be dealt with
together, resulting in hidden requirement conflicts that are not detected by the
architects.
For instance, one requirement is to allow users to ubiquitously access the system
and retrieve all types of documents using remote access tools (ACC-002-01); an-
other requirement specifies that all files are to be converted to readable format
for viewing when the user does not have the program installed (EDM-008-01);
the system design specifies that remote tools such as Citrix and blackberries are
to be used (AA-ASM-908). These requirements and design come from differ-
ent areas of the specifications. When they are analyzed together, conflict arises:
(a) requirement ACC-002-01 is by itself ambiguous, it is not specific as to what
remote tools should be included in the supported list of tools. This is some-
what clarified by the design assumption AA-ASM-908; (b) when blackberries
are required to render documents for viewing, a design conflict is detected. The
blackberry device cannot render documents for viewing.
In this example, the conflict was detected when relevant design outcomes and
requirements are linked together. The design issue becomes visible and when it
is realized that no design option can satisfy the combined requirements, a design
conflict is thus detected.

3. Ambiguous design concerns. When the researchers map the design concerns, in
terms of requirements, to the design components using the AREL model, the
researchers found some inconsistencies between the design concerns and the
design outcomes. Most notably, there were design components that could not
be traced to the specific design concerns. For instance, the architectural design
specified the use of the load balancer, the idea was to distribute web requests
to multiple web servers. However, there were no specific non-functional re-
quirements that outline what level of performance was required. There were,
however, general requirements which state that the system must have “im-
proved client performance” and “automated failover”. The researchers verified
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that these design concerns were the ones that had driven the design decision on
performance.
The architects were asked about this decision, and the architects thought that it
would be a good idea to have a load balancer. The architects might be right intu-
itively with regards to improving the general performance of a system. However,
the decision from this ambiguous design concern had created two architectural
issues: firstly, what level of performance should the system deliver? Secondly,
the use of a load balancer has created new design issues relating to preserving
stateful user sessions in the application design. Subsequent to this realization, the
architects have backtrack the decision and revisited this design area (step 5 of the
design reasoning process).

4. No apparent reasons for a design decision. Even though the requirement and
design specifications of the system were organized and extensive, there was very
little design rationale that was explicitly documented in these documents. After
reconstructing the AREL design reasoning map, it was discovered that in some
of the designs, the design reasoning could not be deduced by the researchers. For
instance, requirements PRO-007-01 and PRO-007-02 specified that documents
that are stored in the application system would be reviewed periodically. The
architects chose to realize these requirements by using a standard reporting mod-
ule that require the document reviewers to search for the documents available for
review.
When the researchers inquired what other design options had been considered,
it was found that the first solution that came to mind (i.e. standard reporting
module) was the final solution. There was no evaluation of alternative design
solutions. One of the possible design solutions in this case was to create an event
driven reporting mechanism where reviewers are notified automatically when
documents are due for reviews. If a design reasoning approach was used, the
architects might have considered this alternate solution. Another study [318] has
shown that designers who do not employ design reasoning can fail to consider
alternative design options.

In summary, it has been found that the design process undertaken by the archi-
tects were inadequate to address all the architectural design issues of the system.
We suggest that this is due to the lack of a systematic design reasoning process.
Architects’ design analysis are functionality focused, and this approach seems to
be ineffective when dealing with cross-cutting concerns in architectural design.
A design reasoning approach offers a new perspective to systematic architectural
design.

9.5.3 Other Findings

Interviews were conducted with the design team at the end of each review session.
They were asked to comment on the research findings and the methodologies, the
following comments were given by the architects and the designers:
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1. Graphical communication tool. The AREL model can be a useful tool to commu-
nicate design reasoning with their clients because it is easy to trace the graphs.
Architects want to use them to validate requirements and architectural design
reasoning with their clients. They suggested to have the clients sign-off the de-
sign reasoning model, and use it to manage any potential changes to the design
reasoning.

2. Facilitate negotiation. The AREL model can depict line of reasoning to the
client, including the viable options and their pros and cons. It allows the soft-
ware architects to argue the necessity to compromise certain requirements. Thus
it becomes a reasoning tool to help discussions and deliberations of requirements
and design.

3. Traceability. Supporting tools are available to import specifications to create
AREL models, making it easier to build the AREL model. This facility enables
the software architects to build models for visualization and better traceability.
The requirement traceability matrix that is developed by the design team cur-
rently does not completely document the relationships between requirement and
design, the AREL model has provided a better traceability in this case.

4. Facilitate learning. The information contained in the UML diagrams enables
architects in other areas of design to quickly understand the design and its
reasoning, making it easier to comprehend the overall design.

There are overheads in creating an additional model to support design reasoning.
The question is if the costs justify the benefits. At this stage, we do not have empir-
ical data to support the costs and benefits of this method. However, if the reasoning
model is built during the design process, the time taken to create the reasoning mod-
els should be a lot less than reverse engineering because the designers already have
the background of the system and the UML entities do not need to be reentered
again. On the other hand, if design issues were not uncovered at the early stage, it
would be a lot more costly to fix them.

9.5.4 Benefits of Design Reasoning

During the course of the architectural design, the software architects had created a
traceability matrix between requirements and design components. The architects ini-
tially thought that such traceability matrix would allow them to thoroughly analyze
and design the system, it turned out that it was only partially useful. In summary,
the researchers are able to pinpoint architectural design reasoning gaps in the de-
sign. Through analyzing the gaps, we have noticed that ad hoc design decision
making does not provide a systematic approach to architectural design. As a result,
conflicts in requirements and design have occurred, certain requirements are am-
biguous, and decisions have not been well-thought out. The results of this study have
indicated that design reasoning can help to achieve the goals described in Table 9.1,
a summary is shown in Table 9.4.



www.manaraa.com

9 Software Architecture Design Reasoning 173

Table 9.4 How design reasoning process serve architectural design

Architectural activities How design reasoning benefits architectural design

Deliberating design Associating interrelated design concerns to identify a design
issue, or a design topic, is an essential step in architectural
design. It formulates what decision has to be made, from
that architects need to identify the design options that can
address the design issues.

Justifying design decisions Having identified the design options, architects should justify
why a certain option is chosen and how it satisfies the
design concerns, using argumentation or trade-offs analysis
method. If a design concern cannot be fully satisfied, then
backtracking to change previously made decisions allow
the architects to iteratively improve the design.

Structured design process The design reasoning process supports a structured approach
to software architecture design. It is an improvement that
allows architects to synthesize a design by exploring and
associating design concerns systematically.

Design validation Design reasoning has allowed systematic analysis of the
architectural design by the researchers, the method enables
architects and reviewers to find hidden design issues, and
serves to validate the architecture design.

Communication and knowledge
transfer

The architects have noted that the AREL UML representation
can be used to communicate and discuss design reasoning
process and trade-offs with the stakeholders. The decision
diagrams can also serve as documented agreements
between stakeholders.

Support architectural
maintenance

The architects have noted that capturing the design rationale
can help new staff to understand the system and quickly
becoming productive.

9.5.5 Limitations in the Case Study

A qualitative research method is used in this empirical case study. The researchers
reverse engineered the design reasoning models of the system using its requirement
and design specifications. The design reasoning model was used to assess if a design
reasoning process could improve the design process. A direct application of the
design reasoning method to the system would have been the preferred approach for
testing this method. If another design team that does not use the method carries out
the same design in parallel, the comparison between the two would yield directly
comparable results. However for sizable real-life system development, this is almost
impossible because of funding issues. As such, we have opted to use the reverse
engineering method as a mean to obtain design data for comparisons.

One could argue that the researchers can benefit from the hindsight. However,
the designers have more experience in the application domain than the researchers.
Without a similar background, the researchers’ only method is the design reasoning
approach. The researchers were not aware of the possible issues that might appear in
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this type of applications. Therefore, the design issues that have been uncovered by
the researchers to a large extent can be attributed to the design reasoning technique.

Although the design team has more experience in this domain, the researchers
have similar years of general design experience, so it is possible that such experi-
ence may bias the findings. It is very difficult to distinguish to what extent design
experience or design reasoning attribute to a high quality design. An empirical study
has shown that design reasoning can help inexperienced designers to design better
[318]. Using the results from both studies, we suggest that the need for experi-
ence and design reasoning is relative to the complexity of the architectural design.
Although we cannot distinguish which one of the two factors (i.e. reasoning or ex-
perience) is more important, we think that highly complex problems would require
design reasoning techniques to aid the thought process.

9.6 Summary

In this chapter, we have outlined a design reasoning method that comprises of five
steps. This method is iterative in nature, and it is based on the causal relationships
between design concerns, design decisions and design outcomes. Using the AREL
model, we have applied this design method to a real-life system. In the empirical
study, it has been found that design reasoning steps to associate design concerns
and to identify design options are the two important reasoning steps in design.

The architects involved in this case study were interviewed at the end of the
study. They have confirmed that by using design reasoning, it helps them to delib-
erate and negotiate design, determine trade-offs and review the architectural design.
They have also noted that the graphical representation of AREL is simple, thereby
making the design reasoning process intuitive and easy to use. From this observa-
tion, we suggest that such simplicity can overcome some of the issues faced by
existing design rationale models where complex representations have hindered their
implementation [79, 58, 206].

Acknowledgements This research has been partially sponsored by the Dutch Joint Academic
and Commercial Quality Research and Development (Jacquard) program on Software Engineer-
ing Research via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN about architectural
knowledge.



www.manaraa.com

Chapter 10
Modeling and Improving Information Flows
in the Development of Large Business
Applications

Kurt Schneider and Daniel Lübke

Abstract Designing a good architecture for an application is a wicked problem.
Therefore, experience and knowledge are considered crucial for informing work in
software architecture. However, many organizations do not pay sufficient attention
to experience exploitation and architectural learning. Many users of information
systems are not aware of the options and the needs to report problems and require-
ments. They often do not have time to describe a problem encountered in sufficient
detail for developers to remove it. And there may be a lengthy process for provid-
ing feedback. Hence, the knowledge about problems and potential solutions is not
shared effectively. Architectural knowledge needs to include evaluative feedback as
well as decisions and their reasons (rationale).

In order to address this issue, this chapter proposes two concepts: (1) Integrating
feedback and experience exchange mechanisms to facilitate architectural experience
reuse and (2) an approach for modeling information flow in a project. Feedback and
experience flows are designed to support effective learning. Each cycle produces a
growing knowledge about the application. Service-oriented architectures (SOA) are
used as an example to illustrate this general challenge in software architecture.

10.1 Introduction

Creating and using an effective architecture for a new application requires a wide
variety of skills and knowledge. As the above questions illustrate, information and
knowledge needs to come from the users of an application. Familiarity with the
domain is indispensable in understanding business processes and requirements. At
the same time, technical knowledge is a mandatory requirement for developing an
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application. Maintaining and evolving existing components and services requires
both technical and domain knowledge, and experience.

Finding the requirements and architecture for a new application is often a wicked
problem [266]: by presenting a solution, the problem changes [260]. A new applica-
tion changes the processes and dependencies in its domain. Even valid requirements
may become invalid through the presence of new features. A requirements-centric
view as described in Chap. 2 is not sufficient. For that reason, the development
and operation of a long-lived application often resembles an ongoing evolution and
learning process. Architectural decisions may need to be revised or extended under
the influence of real-world feedback. Therefore, a better vision for designing large
business applications is a co-evolution of requirements and architecture as described
by Pohl and Sikora [253].

Giving and getting feedback may appear simple at a first glance. However,
it faces many challenges well known in the field of Systematic Learning from
Experiences [32, 283]. Obviously, handling feedback consumes time and effort.
Knowledge management [88] and experience-based process improvement [279]
have identified many additional challenges, including psychological and practical
issues. For example, the workplace of a typical travel agent is not designed to en-
courage feedback on applications and their behavior. Giving feedback requires an
agent to neglect value-added sales activities and write a note or report. It is, thus,
not surprising that developers and users know little about each other – although they
could collaborate to improve their applications.

Kruchten et al. characterizes architectural knowledge as:

architectural knowledge = architectural design + architectural decisions [192].

However, since neither design nor decisions are static, we claim that a term “+ feed-
back” should be added to the equation. Design rationale may be falsified as context
and environment change. A decision based on an outdated rationale should be re-
considered. In this chapter, I address two related topics of exchanging information
and knowledge in the area of designing application architecture. Service-oriented
architectures will be used as an illustrated example: They serve to describe both the
problem and concrete opportunities for solving it.

1. Information and experience flow modeling [287, 288] is proposed for analyzing
communication between users, developers, and other stakeholders. By consid-
ering light-weight information transfer innovative links and shortcuts in the
communication surrounding an application and its evolution are envisioned and
designed.

2. Communication is supported by integrating concepts and mechanisms of experi-
ence exploitation [280] into an application.

The result is a map of communication. It contains the information flows around ap-
plication development, and an overview of the mechanisms introduced for learning.
An Experience Forum is proposed as an integral part of that application. The forum
reduces the threshold for reporting feedback and experience. It also provides archi-
tects and developers with opportunities for eliciting and validating evolving users’
needs.
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This chapter describes the concept of using information and experience flow for
improving the architectural knowledge sharing in software development process. It
also demonstrates how to explicitly model the flow of information and experience.
The rest of the chapter is structured as follows. Section 10.2 presents information
flow modeling as a technique to visualize and discuss communication and flow
of experience in a software project. It has been developed at Leibniz Universität
Hannover. This technique is illustrated on a large business project, in Sect. 10.3,
leading to an overview map. It contains a feedback capturing mechanism and an
Experience Forum as architectural building blocks for effective learning and evo-
lution. Section 10.4 discusses options for experience exploitation mechanisms as
a special case for knowledge management. We have implemented those aspects for
SOA projects, exploiting its flexible architecture and process-related building blocks
(Sect. 10.5). Related work is addressed within each section.

10.2 Information Flow Modeling

In every software development project, requirements must flow from customers and
users to the developers. Feedback must flow back to developers, as the effective flow
of information and feedback is a prerequisite to the above-mentioned learning cy-
cles. Modeling the flow of information in a project can, therefore, help to understand
some dependencies and opportunities better. We use the term “information flow” as
a generalization of the different types of information flowing, such as requirements,
feedback, and context information.

10.2.1 Information Flow: Concept, Focus and Purpose

Kwan et al. propose to observe communication in software projects in order to de-
rive models [194]. Since they suggest using automated mechanisms for collecting
data, their main focus on documents and electronic sources, which are easier to trace
and monitor. However, Damian concedes that it is not sufficient to observe written
and documented information alone [87]. Although it may be interesting to moni-
tor real communication in a specific project, we propose to determine and design
communication channels.

Observing real communication can support tracing. Traces in requirements en-
gineering are normally used for linking design decisions with requirements. The
requirements-centric view described in Chap. 2 focuses on tracing requirements to
architectural decisions. Winkler focuses on information flow from a tracing per-
spective [339]. Kwan et al. trace communication activities like emails. Winkler is
interested in establishing relationships between artifacts based on the flow of infor-
mation among them. Unlike Kwan et al. [194], Damian [86], and Winkler [339], our
information flow models make informal communication explicit. It complements
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document-based communication with oral or informal information flows wherever
appropriate.

I propose to discuss the integration of experience exploitation into develop-
ment by visualizing, discussing and optimizing information flows. There is also an
overview of the design that needs to be implemented later.

According to the iterative and learning aspects of software projects, we are
interested in information flows from a specific perspective. We want to design infor-
mation flow in order to support the construction of an SOA application. Feedback
and experience need to flow in support of ongoing maintenance and evolution. In-
formation flow models are supposed to visualize all those flows, and enable us to
improve and support them.

Stachoviak’s model theory [304] has a few basic concepts that are also stressed
in our information flow models. Each model represents a part of reality with respect
to:

1. Certain users of the model
2. For certain purposes
3. At a certain time

Relevant properties of the original system are mapped onto the model system. Most
models have additional properties that are not mapped from the original system,
but facilitate handling of the model. For example, a wind tunnel model of a car
may consist of clay. The shape of the car is a property mapped onto the shape of
the model. According to the purpose of wind tunnel experiments, shape is relevant.
Clay as a material is a property of the model, but does not represent (i.e., map) any
aspect of the car. Instead, clay was chosen since it is easy to shape. When a model
is constructed, it is important to keep (1) users (2) purpose and (3) time of use in
mind.

Depending on the intended users, purposes, and usage times, information flow
modeling may be carried out in very different ways. Therefore, it is important to
define purposes of modeling information flow for software projects (Table 10.1). We
describe those purposes and reference publications to related application in industry.

Increasing Awareness and Overview is the basis for all other purposes. Exist-
ing processes and communication structures can be improved – or new flows can
be designed using information flow models. Building on the new situation, se-
lected information flows can be supported by providing dedicated support tools or
technique.

Table 10.1 Overview of the purposes of information flow modeling in software projects

Supporting new flows through tools and techniques

Improving requirements
or

Designing use and
processes and practices Flow of experiences

Increasing awareness and overview
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Increasing awareness and overview. A model of information flows corresponds to
a map of project communication. Stakeholders and participants can use it to find
a relevant document or person. Not all stakeholders in a project may be aware
of their role. Some may not know all sources and paths of information avail-
able. In particular, flows of feedback and experience may be unclear or difficult
to follow. Knowledge of information flows and their properties is needed by archi-
tects. Architects should consider information flow when they design an application
for long-term use and evolution. Discussing and modeling flows can increase the
awareness and provide an overview for all participants.

We applied the information flow models for visualizing the original equipment
manufacturer (OEM) vs. subcontractor relationship in requirements engineering for
electronic control units at a car manufacturing company. Allmann [14] discussed
different variants of that relationship.

Improving requirements processes and practices. Requirements engineering pro-
cesses are often based on informal communication. Requirements in a SOA project
are expected to flow along different paths. That is why choice of appropriate in-
formation flows are considered essential for improving those processes effectively.
Therefore, visualizing communication and information flows is expected not only to
increase awareness [288] but also to supports improving the processes and practices
with respect to information flows. The criteria for “better” flows depend on the con-
straints and requirements. By identifying the constraints that are the characteristic
of SOA application development, we identify the criteria for appropriate flows. We
evaluated a large process model with respect to information flow in a financial in-
stitution [307]. A custom-made search tool helped us to identify over 100 findings.
We found that some were simple modeling flaws, while others uncovered potential
for improving information flow.

Designing use and flow of experience. Experience is often neglected in process mod-
els. Information flow models according to the style presented below are intended to
include experience sources, sinks, and flows. Besides visualizing those aspects in the
map, new processes can be designed to install flows that do not yet exist. We have
developed a mechanism for SOA application. As a result, innovative feedback chan-
nels can be established. The above-mentioned learning cycles rely on rather specific
patterns of experience flow. Identifying, designing, and supporting those patterns
include designing the use and flow of experience. Other areas of architecture will
require different solutions to implement.

We used information flow analysis in the automotive industry to plan for the
introduction of a Wiki system [306]. It was supposed to improve the flow of
requirements and information.

Supporting new flows through tools and techniques. Understanding existing flows is
a prerequisite for improving them. With the purpose of improvement in mind, one
will reroute some flows in business projects. However, implementing a redirected
or novel flow will not work by simply “defining” it. As an incentive to participants,
following the desired flows should be advantageous to using the old paths. This
is a lesson learned in experience exploitation [280] and knowledge management
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alike [88]. A tool or technique can be offered to facilitate the work of stakeholder.
This support can make the new flows more attractive and contribute to their accep-
tance. By design of the tool or technique, new flows are encouraged or enforced. For
example, it is possible to build tools and techniques specifically for improving cer-
tain flow patterns. The FastFeedback tool provides feedback on use cases while they
are elicited during stakeholder interviews. It was built for analyzing concrete infor-
mation flow models in the requirements elicitation phase of a large administrative
project [281].

Information flow models are usually created in an interactive process of inter-
views, consistency checks and workshops. A moderator uses a visualization to focus
and document discussions. Information flow models can be considered a type of
knowledge in their own right. Learning about communication in a project will be
captured and expressed in information flow models in Sect. 10.5.

10.2.2 Key Concepts and Modeling Notation in FLOW

Information flow modeling needs to address the above purposes. A number of con-
cepts were developed during the FLOW project at Leibniz Universität Hannover.
These concepts enable model builders to focus on relevant properties of com-
munication and information flow, while omitting most other aspects of an SOA
project.

Fluid representations include meetings and oral communications, blogs, chats,
informal Wikis, phone calls, and personal e-mails not accessible to others. Fluid
information is commonly used in most development organizations, but many current
process models are restricted to solid information.

Solid representation refers to documents and stores with certain character-
istics:

1. Information can be retrieved by others
2. Without the help of the author or source
3. Even after some time has expired and
4. In a form that supports dissemination

All other representations are called fluid.

Not every act of fluid communication is relevant to a project (e.g., personal chat,
random meetings at the coffee machine). However, ignoring fluid requirements leads
to errors, misunderstandings, and parallel work. There are trade-offs: Creating solid
representations and retrieving information is often more effort-consuming than fluid
exchange via human interaction. In turn, fluid information can be forgotten, and it
is limited in access. Combining advantages of both styles is the basis for designing
individual networks of flows.

It is important to note that we do not assume each and every requirement or
piece of information needs to be solidified in the end. For some purposes, fluid
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information state store information flow experience flow activity

solid

fluid

<label>

<control>

<support>

In Out

<experience>
(optional tag)

<experience>
(optional tag)

<information type>
(optional tag)

<information type>
(optional tag)

<person> <group>

<doc name> <doc type>

Fig. 10.1 FLOW Syntax

representations are more appropriate than solid. For example, many users will prefer
giving oral or informal feedback over writing reports. FLOW is used to explicitly
modeling previously tacit knowledge on fluid representations of information. We
take fluid information very seriously and discuss it in detail (see below), but we do
not claim it must become a requirement in all cases.

We model, analyze and improve information flows in software projects. Models
are often sketched on whiteboards and redrawn in PowerPoint or other graphical
editors. The notation must, therefore, be simple and avoid unnecessary detail.

The syntax shown in Fig. 10.1 was designed to convey the concepts of informa-
tion flow:

• Stores are depicted by easy-to-draw symbols that are provided in most drawing
tools: A document symbol and a human face. Humans are the most important fluid
stores, while documents are the classical storing device of solid information.

• Identifiers refer to individuals or roles, depending on the purpose of a model.
• Multiple document or person symbols refer to one or more stores of the same

document type or group of persons. Details are omitted intentionally.
• Flows are represented by arrows. All flows originating from a solid store are solid.

All flows originating from a fluid store are fluid.
• Flows originating from an activity can be either solid or fluid: A model builder

can express an intention or assumption by using fluid or solid style.
• Tags on arrows can be used to highlight specific types of information flowing.

Requirements and derived information are the default type.
• Experience is depicted in a different color or in gray.
• The activity symbol is a box. Flows may be attached to each side. The box

indicates decomposition: there are different options to implement an activity.

10.3 Designing Feedback and Information Flows

In this section, problems and feedback during the development large business ap-
plications are visualized using the FLOW notation. The visualization will help to
understand and compare different flows of feedback. Step by step, a more desirable
situation will be designed. In subsequent sections, support for implementing that
vision will be presented.
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The main challenges for requirements and feedback in large applications have
been described above. In short, the aspects were:

Many users: There are many users of the application
Who provides requirements and feedback?

Unclear flows: How do requirements and feedback reach developers?
Motivation: He way from a user to the designers is long and takes time

There is no immediate advantage to the users reporting feedback
How can people be motivated to give feedback?

Speed: How can one speed up the flow of feedback and reaction?
Errors: Requirements and feedback may be polluted on the long way

from source to developers. How can errors be avoided?
Context: How to capture the context of feedback effectively?
Effort: How to reduce the effort for processing feedback?

The above challenges are now considered one by one. A series of FLOW diagrams
visualize the argumentation.

10.3.1 Designing Information Flows for Large Business Projects

Many stakeholders and users. There are large groups of stakeholders and several
developers in a project. The feedback from stakeholders to developers is specified
as a fluid flow because we cannot rely on written feedback. Fluid feedback is more
convenient to provide for stakeholders, but it is more challenging for storing and
analyzing.

Figure 10.2 makes no further statements about the nature and implementation of
this flow. By analyzing the situation, it turns out that all stakeholders may provide
requirements, including management, system administrators and users of the appli-
cation. Users are considered a specific kind of stakeholders. This fact is modeled
by a generalization relationship. It is not explicitly part of the FLOW notation, but
adopted as an extension.

Both feedback and requirements are types of information flows. We assume that
“giving feedback” requires using the application. Only users do that (Fig. 10.3),
while other stakeholders (e.g., managers) may provide requirements, but not feed-
back. In the next step, we want to follow the information flows more closely. At
this point, it is not obvious where stakeholders (including users) get the information

Fig. 10.2 Undefined flow between many stakeholders and several developers
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Fig. 10.3 Users as source of feedback in development

Fig. 10.4 Long flows between stakeholders and developers, with unclear aspects

that enables them to give feedback and formulate requirements. It is not realistic
to let users communicate with developers via phone calls or emails (fluid flow).
There should be an instance that decides about the feedback that eventually leads
to changes. Change management as in Fig. 10.4 is a usual way of organizing this
filtering activity. A group of user representatives receive the fluid input of users and
take it into change management. As a result, there is a document containing change
requests. Those are the definite basis for developers. It is (intentionally) unclear in
Fig. 10.4 who makes decisions in change management.

The information flows in Fig. 10.4 and respective processes are long and te-
dious. Why should a user or other stakeholder take the time and effort to provide
input? Triggering improvements in an application are the most obvious reason. De-
velopers provide a new release to users. Another information flow that acts as an
incentive is an immediate visibility of feedback to peer users. When feedback is
available to other users, they can directly respond to problems, maybe even resolve
misunderstanding or spurious flaw. Social recognition may encourage more people
to contribute feedback and responses. Short-term visibility of feedback can be an
important incentive for turning a group of users into a Community of Practice [335].

For clarity, we focus on users and their feedback only (Fig. 10.5). The branch of
stakeholders and their requirements can be discussed in an analogous way.

Speed. At this point, the process of improving the application is rather long. User
representatives, change management with written change requests, and the devel-
opers writing a new release are chains of information flows and transformations.
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Fig. 10.5 Improved releases and social recognition among peers as incentives for feedback

Fig. 10.6 Increasing speed through direct and fluid information flows

It may be faster to allow direct communication links among most participants. Fluid
information flows are usually faster than solid ones. This leads to Fig. 10.6.

However, Fig. 10.6 looks very cluttered and difficult to organize. There are many
different paths of information, and most of them are fluid. The entire model looks
very fluid, which generally implies fast flows but high risks for losing information,
or polluting it with errors. Therefore, we design an activity into the communica-
tion model. Obviously, users will use the application at some point. By including
that activity into the information flow model, we emphasize its importance. Within
the FLOW model, we are only interested in the implications on information flow,
but not in any other application details. In Fig. 10.6, the Application Release con-
stitutes information for Users – in an unspecified way. Slightly more precise than
Fig. 10.6, we state that the application release is needed as a prerequisite or tool for
the “use application” activity (i.e., arrow from bottom). Figure 10.7 also explains
where users get the information for their feedback: By using the application, they
are stimulated to provide feedback. We want to avoid distracting users from their
main task. Therefore, feedback must be collected close to using the application.
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We decide to let this information flow into the activity of using the application. In
addition, we require context to be collected with the feedback. The box representing
the activity hides all details. We also decide to provide solid feedback (a document
or artifact), which requires some sort of transformation within the use application
activity. This document can be read by users. Together with fluid communication
from user representatives, the document implements the feedback loop that sup-
ports social recognition for users who provide feedback. At a later point, we will
have to decide how to implement “use application” with the above-stated properties
and information flows.

Avoid errors. Figure 10.7 still contains lengthy flows including several consecu-
tive transformations. This corresponds to an information flow pattern that indicates
a high risk of errors (see the Chinese Whisper pattern [307]). We decide to make bet-
ter use of the feedback document. In Fig. 10.8, the feedback document will be used
in change management directly. User representatives will also use it for making
decisions. We assume management will be represented in change management, too.

Fig. 10.7 Introducing a black-box activity helps to clarify information flow

Fig. 10.8 Shorter flows and more intense use of feedback document
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Fig. 10.9 Replacing a simple document by the Experience Forum architectural element

This resolves our last remaining question mark. By using the same document in all
places, probability of inconsistencies is reduced.

Integrate learning from experience. At this point we emphasize the use of knowl-
edge and experience. For that purpose, the single feedback document is promoted
to an activity called “Experience Forum” (see Fig. 10.9). As an activity it might
be called “use Experience Forum”, but at this point we decide to emphasize the
architectural element associated with the activity. The activity box hides the imple-
mentation details of an Experience Forum. In Sect. 10.4, options are compared for
implementing the boxes in Fig. 10.9.

10.3.2 Conclusion: Desired FLOW and Architectural Elements

The considerations visualized by FLOW diagrams have led to an information flow
model. It can be redrawn as in Fig. 10.10, which shows all feedback loops and
cycles:

This diagram visualizes architectural knowledge in a concise form:

• There are interrelated cycles of iterations and learning.
• There are embedded cycles between Experience Forum and participating groups

of people (developers and representatives). The user cycle of learning includes
using the application. Developing and discussing the sequence of FLOW dia-
grams facilitate making decisions and designing information flow aspects – not
only analyzing a given architecture. This diagram visualizes how architectural
knowledge is created and shared in a concise form:

• There are interrelated cycles of iterations and learning.
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Users

Application
Release

Developers

Change
requests

ManagementUser Reps

Use
Application
w/ capturing

Experience
Forum

Change
Mgmt.feedback

Fig. 10.10 Final flows and activities to be supported. Result of designing information flows

• There are embedded cycles between Experience Forum and participating groups
of people (developers and representatives). The learning cycle of users includes
using the application in practice.

• There must be interesting stuff in the center box.
• The sequence of FLOW diagrams facilitated making decisions and designing in-

formation flow aspects – not just analyzing a given architecture. The diagrams
themselves constitute knowledge relevant for software architecture.

In Sect. 10.4, the center box is discussed in detail.

10.4 Designing an Experience Forum

This section outlines the principles and activities involved in a systematic ex-
perience exploitation [282]. Architecture knowledge management includes han-
dling of experiences. Architecture is an area that relies on learning by experience,
since there are only a few general principles guiding it (such as information hid-
ing, three-tier-architectural pattern, etc.). Experience is regarded a special kind of
knowledge.

We use “information” as the general term covering feedback, experience, and
other information relevant to a software architect’s task. We adopt a pragmatic defi-
nition for experience, as consisting of (1) an observation, (2) a related emotion and
(3) a conclusion, according to [281].

According to this definition, there needs to be an authentic source (observation),
not just a belief or theoretical deduction. An emotional response is the key for re-
membering what happened. Both good and bad emotions may trigger that effect. In
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addition, an experience useful in software engineering must include a conclusion: It
may refer to the reason for the observed event, or it may refer to its consequences. By
generalizing and abstracting, the observation becomes reusable in “similar” cases.

Requirements are not experience according to that definition. Feedback should
contain an observation, together with the reason to give that feedback; the latter may
be an expression of an emotion (often as a reaction to a problem). Not every feed-
back will contain a conclusion, but the response by architects can add an explanation
or a resolution to the observed problem, which can be considered a conclusion. This
turns feedback into an experience by the above definition.

A good context description will be essential for repeating the observation and for
deriving a conclusion. Obviously, there may be a non-trivial transformation from
incoming feedback to reusable experience for application users. At the same time,
architects may reuse feedback and experience in a different way, for example, by
drawing architectural conclusions.

There are numerous examples of concrete feedback that may be treated in large
projects. Figure 10.11 shows an excerpt from a UML model of relevant feedback.
In this example, comments and ratings provide options to describe feedback. Refer-
ence to business processes is made, which typically happens in SOA projects very
explicitly.

Several types of feedback are distinguished:

• Bug Reports describe a software defect, incorrect functionality.
• Feature Requests refer to missing functionality from the users’ point of view.
• Process Shortcomings are directed to flawed business processes rather than poor

implementation.
• Process Experience refers to a full triple of (observation, emotion, and conclu-

sion) with respect to a process step or use scenario.
• Software Support Requests are questions rather than observations. Users want to

know how to use a feature or achieve a certain result.

There may be other examples of feedback in other environments. We focus on busi-
ness applications in the following discussions. Other mechanisms will be needed to
implement the concepts in other areas.

CD: Experience Forum Model (ExpForum)

Bug
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Request
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shortcoming
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Fig. 10.11 UML Model of feedback in the Experience Forum [215]
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10.4.1 Learning Cycles in General and in Software Architecture

Iterative and evolutionary development approaches imply cyclic processes. These
processes reflect the cyclic learning models of Kolb [186], improvement cycles like
the Quality Improvement Paradigm [31]. Some cycles are shown in Fig. 10.10. Oth-
ers may occur within the activity labeled “Experience Forum”. In this section, we
describe typical activities of experience management. An systematic learning from
experience requires rich interaction on a platform for sharing with several knowl-
edge workers [102]. It is the main purpose of an Experience Forum to organize and
enable those interactions. There is a wide range of possible implementations for an
Experience Forum, including help desks, ontologies, and Wikis. We briefly compare
some of them and explain why we consider a forum a good compromise.

The following activities are at the core of experiential learning in software
engineering:

• Experience activation. How stakeholders become aware of a reusable insights.
• Experience collection. How experience and its context can be secured.
• Experience engineering. How collected material can be compared, validated, and

transformed into more reusable pieces of knowledge and experience.
• Experience dissemination. How results reach those who need them.

Figure 10.12 shows a typical learning cycle including a computer-based “experience
base” [286] that can support it. It is essential to note that the cycle needs to keep
turning for effective learning from experience. We use an of several interrelated
learning cycles:

• Users learn by using the application with the extended experience mechanisms
• Developers learn by accessing the Experience Forum, and through development

iterations
• User representatives learn through interaction with the Experience Forum, and

through longer cycles.

Fig. 10.12 Experience cycle with core activities of experiential learning and flows
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Unlike usual representations of the experience cycle, Fig. 10.12 also shows incom-
ing and outgoing flows of information as the “flow interface” [285] of the experience
cycle. Depending on its implementation, experience engineering can include exter-
nal knowledge from other sources (input from the right in Fig. 10.12). Note that the
terminology used below slightly differs from traditional terms presented in the in-
troductory chapters of this book. This is due to a different emphasis in the following
presentation of experience engineering [282]. For example, activating experience
refers to making someone aware of his or her experiences. In this context, it is more
adequate to consider activation a first step of “externalization” or “codification”.

Experiences need to be activated. It is not sufficient to wait for feedback and
experience to pop up [284]. Instead, there should be mechanisms for provoking
creative breakdowns [289]. During periods of intense work, such a breakdown is
needed to make knowledge workers aware of the experience or insights they just
gained. Obviously, the delicate balance must be kept between too little activation
and too many interruptions (breakdowns).

Collecting and storing feedback and incoming material is a necessary but not
sufficient condition for implementing the full experience cycle. Management and
software engineers tend to confuse storing experience with the full learning cycle.
Storing and searching require technical support. However, the remaining parts of the
experience cycle cannot be skipped or neglected without major drawbacks [30, 286].

Experience engineering includes the tedious tasks of validating, comparing, and
transferring incoming material into more reusable elements. Without experience en-
gineering, false feedback and misleading statements of experience will be stored
and distributed to others. This puts the credibility of an experience exchange at
risk. Sometimes, input sources are inconsistent due to different contexts. Therefore,
comparing and analyzing contexts adds a lot of value to the consolidated output.

It is a major misunderstanding to expect altruistic behavior. An expert or user
needs reasons to provide input [88]. It is also unrealistic to expect that others will
be eager to get and reuse experience [278]. Instead, most knowledge workers, such
as architects, consider experience yet another source of support for their main task
of designing an application. Therefore, experiences and other input should be trans-
formed into recommendations for architects. They should tell architects what to
do under which circumstances (contexts), not just offer past experiences of other
people. This requires a creative transformation – which can usually not be fully
automated.

Even dissemination is more difficult than it may appear: It is not sufficient to
post results (best practices, feedback, etc.) on a Web site or in an experience base.
This would require users to actively search for relevant information. Since they do
not know what activities are supported, their search may fail several times – and
leave them frustrated with the repository. We derived several conclusions from this
observation [284]. Within the scope of this contribution, it should be noted that
results must be presented in a way so that they can be immediately reused [308]. For
this purpose, it is important to know the work practices of the people to support –
application users and architects, in our example.
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The experience cycle in Fig. 10.12 shows activities and dependencies; infor-
mation will flow along the dependency arrows, and between activities and the
experience base. This informal notation is not completely consistent with the FLOW
notation defined above. Therefore, a few comments are in place to clarify the
relationship between the two models:

• The Experience Forum requires certain incoming and outgoing flows of informa-
tion. This is called the “flow interface” of the activity [285].

• The entire experience cycle needs to be covered within Fig. 10.12. The input and
output of the experience cycle needs to match the information flow interface of the
Experience Forum. Parts of the experience cycle (including some of its activities)
may not be visible in Fig. 10.10: they are internal parts of the Experience Forum
activity.

10.4.2 Mechanisms for Feedback and Experience

As reports from Ericsson [167] and DaimlerChrysler [149] illustrate, experience
cycles can be implemented in different ways. In this section, we briefly present one
way of implementing experience cycle of architects and other stakeholders, through
what we call a forum:

A forum is an informal opportunity for people to meet and exchange their ob-
servations, conclusions, and opinions. Often, problems raised by one person are
answered by another person. The public answer is available to all participants. In
contrast to a helpdesk, not all participants have a problem when they log in. Some
act as recommenders who consider social recognition as an incentive [88]. Commu-
nities of practice are voluntary groups of people interested in a common topic [335].
A forum can support communities of practice by offering synchronous and asyn-
chronous options for communication. In contrast to a Wiki, a forum facilitates direct
interactions for asking and answering questions, or for discussing issues.

Experience is being activated by questions and discussions, or by a real-world
problem that someone describes in the forum. Dissemination occurs during the
replies. However, in a forum there might be several replies. Since they are writ-
ten (solid), others may find the advice later. Dissemination can occur through
this channel, too. Collecting is, therefore, supported in a trivial way by keeping
old discussions. If there is a moderator sorting and filtering contributions, a first
step of engineering is achieved. However, a wide range of further engineering and
dissemination mechanisms can be integrated into a forum.

Many mechanisms comply with the flow interface of our Experience Forum ac-
tivity. We consider a forum a good compromise between effort and result. A forum
is open to accommodate different engineering mechanisms. User representatives
and architects should support the Community of Users by analyzing input. This
will increase their own understanding, and they may be able to provide immediate
help. They can use the forum for answers. Therefore, we suggested an “Experience
Forum” as the default implementation.
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Fig. 10.13 An Experience Forum may contain some or all steps of the experience cycle

The forum needs to be integrated within the information flow depicted in
Fig. 10.10. In particular, feedback must be captured while users carry out their
main task: using the application. The answers to questions and feedback must be
channeled back to reach them in that same context: Context is essential for proper
dissemination. We propose to integrate the entire interface of the Experience Forum
into the SOA application user interface. The Experience Forum box is shown around
the experience cycle in Fig. 10.13.

10.5 Supporting Feedback and Experience in SOA Projects

The feedback and experience support mechanisms proposed above can effectively
be implemented. We sketch a solution available to SOA application development as
an example.

10.5.1 SOA: Aligning Software Services with Business Processes

The main driver behind SOA is the idea of better aligning the business with its sup-
porting IT infrastructure. Software should be easily maintainable and it should be
possible to quickly change it in order to adapt to changing business environments.
Different roles need to collaborate for an SOA to work properly. Especially busi-
ness process designers and software developers need to work together to closely
couple business requirements and processes to the software. Only such collabora-
tion guarantees that changes to the business requirements can be anticipated and
implemented in the software in a short time-frame.
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In general, services do not need to be offered by the same organization that is
using them. Services from external partners may also be incorporated into the ap-
plications. This way it is possible to technically support business processes that
span multiple departments and companies. The Service Consumer is the actual user
of a service. Typically, this is the company searching IT support for its business
processes. Service Providers are actually hosting the service and are typically the
developers of the service implementation.

The following characteristics of SOA applications are relevant for implementing
experience mechanisms as designed above:

• An SOA application consists of services that are either reused or built.
• Services need to be combined or “orchestrated” in order to support business

processes.
• The flexibility promised by services requires technical and organizational sup-

port. For example, the ability to generate an orchestration from a business process,
or an option to integrate application elements or user interfaces with reused
services.

The most typical technical choice for implementing the abstract idea of an SOA is
Web services. Web services are based on HTTP for transmitting the data that are
in turn encoded in XML. Being pushed by marketing organizations, Web services
have gained much attention. In consequence, several tools are offered to support
Web services. Because Web services are platform-independent they are well-suited
in most integration scenarios.

In short, SOA promises integrating the IT with the business in order to support the
business. In order to do this, software is divided into services that can be arranged
flexibly. All other facets of SOA are connected to this main goal.

10.5.2 SOA as an Example for Large Business
Application Projects

SOA is a typical area of architecture highlighting some of its problems in a spe-
cific way: For achieving this integration IT architects and business architects need
to communicate. Typically, IT architects do not know what is necessary in the cur-
rent business setting. Vice versa, Business Architects know their business processes,
but cannot deal with all the technical details. This gap possibly leads to defects
in both the business processes and the software support. Often, business processes
are defined only during the project, which causes misunderstandings and affects
application quality. The need to remove defects puts more time-pressure on the
project, which may cause further defects and mistakes. Determining an appropriate
granularity of services is another core issue.

In order to overcome problems like these, explicitly optimizing information flows
is an important step. Information and knowledge, in particular knowledge gained
from practical experience, is a worthwhile approach. Architects learn from their
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mistakes and from the experiences users make with the newly developed busi-
ness processes and software. This includes the development of user interfaces and
the granularity of tasks for the users. Information flow models helped to conceive
concepts and mechanisms for systematic reuse of feedback and experience. Un-
like other large business application projects, SOA offers opportunities for weaving
experience management mechanisms into the business application.

10.5.3 Integrating Feedback into SOA Applications

The concept of integrating experiences in a large business project relies on tool sup-
port to make it work in practice. The support software has to make the proposed
information flows “affordable” in terms of time and effort for all stakeholders in-
volved. Required software components must be non-intrusive and quickly available.
Gathering feedback is a common task in all SOA applications. It should not be re-
implemented in every application, but the needed functionality should become part
of the SOA infrastructure. This way, it is possible for all SOA applications to benefit
from the experience mechanisms without adding their own implementation.

Our technical solution is the Experience Forum for SOA applications [217]. An
implementation was integrated into the SOA-Me platform [215] that supports ser-
vice composition and human interaction with the application. Its principles are as
follows:

• Business applications consist of services. Service detection is not affected by our
approach; we do not further discuss it here.

• Business processes are the backbones of SOA applications. Business processes
are modeled in a notation like BPMN [337] or EPC [226].

• Tools like SOA-Me [215] can generate service orchestrations from business pro-
cess models. They integrate references to services. As a result, an operational
SOA application is created.

• There are advanced options for creating basic user interfaces from extensions of
business process models. User interfaces can be generated from abstract models.
This technique is called model-based user interfaces [216, 249, 324].

These principles are illustrated in Fig. 10.14. Services are combined according to
business processes. They are orchestrated (combined) by SOA-Me and can include
user interfaces. In principle, the orchestration is extended by generating access to an
Experience Forum. Feedback can be entered, and existing feedback relevant for the
task at hand is displayed. SOA-Me is a feasibility prototype. It serves as a proof of
concept and demonstrates the above-mentioned concepts for “integrating feedback
mechanisms into SOA at a very low cost”.

The key concept is the easy access to the application and service context. Users
do not have to specify where they are (in terms of user interface) or what they
do (in terms of business process steps). Nevertheless, receivers of feedback like
developers, architects, or peer users can benefit of complete context information. It
is attached for free.
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Fig. 10.14 Generator orchestrates SOA application from services and business process

Since an application is generated from services according to business processes
(Fig. 10.14), it is easy to use the links for feedback contextualization. Precise links
to the services and interface elements can be included with any feedback given.
They would be useless without context, though. Therefore, a contextualization fea-
ture is added during generation. Since the generator “knows” the business process
step and the application screen of each experience entry field, it can take care of
attaching that information. A side-bar for the “Use Application w capturing” activ-
ity in the flow model of Fig. 10.10 can be integrated into the application interface.
It enables users to read and type in short notes. It is active at all times and works
asynchronously with the main application. It displays feedback and information that
is related to the current task at hand and the position of the user within the appli-
cation. Experience engineering interfaces include direct access features to search,
filter, and follow context hyperlinks. Feedback is entered into the Experience Fo-
rum, which is implemented as a central experience service. It is generated into the
SOA application as part of the SOA infrastructure.

10.6 Summary

Building large applications using existing process models and building blocks
requires skills and knowledge from several different domains. It reaches from tech-
nical details of building those applications and architectural principles to knowledge
of the application domain. No architect can cover everything at the beginning of a
project. By their very nature, large and long-lived applications will go through an
evolution.

We suggest treating that evolution as a technical iteration and a learning pro-
cess at the same time. Systematic learning from feedback and experience requires a
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methodology and technical support. We use information flow modeling as a method-
ology to design the communication in a project. In particular, we explicitly consider
fluid information along with solid documentation. By going beyond documents, we
consider light-weight options. This is essential for effective learning since no con-
tributor is willing or able to invest much time or effort. Therefore, all possibilities
must be investigated to lower the threshold for participation.

Creating the information flow model is a first act of using project knowledge. The
resulting model is then used to guide feedback and information within each project.
Our key suggestions for integrating learning into the development process are:

• Develop a mechanism to facilitate giving feedback during the use of the applica-
tion.

• Capture context information automatically by integrating capturing mechanisms
into the application.

• Use an Experience Forum for collecting, engineering and enriching, as well as
disseminating feedback and full experience.

• Provide short-term reactions in the application context to users and their repre-
sentatives. Make sure to display information in a matching task context only.

• Enable architects to use feedback for deriving higher-level architectural conclu-
sions. They lead to learning at the architectural level and to mid- or long-term
improvements of the application.

The information flow models specified the capturing and Experience Forum ac-
tivities. From an architectural perspectives, those activities need to be supported
as architectural elements. Those elements in association with SOA applications
were implemented as an example and a feasibility prototype at Leibniz Universität
Hannover. An advanced approach towards generating SOA orchestrations facili-
tates the seamless integration of experience support mechanisms into the business
application itself.

Other types of projects will require different ways of implementing that integra-
tion. On a conceptual level, projects and environments may face slightly different
situations and challenges. Information flow models can be modified to accommo-
date different communication needs. Mechanisms and architectural elements will
be specified by their interfaces within the model using the FLOW notation. In a
separate step, the implementation of each “activity box” can be designed. This step
should consider the core principles of experience exploitation, and it should always
try to handle context information automatically. On top of those core principles,
many decisions can be adapted by architects.

On a conceptual level, we propose to exploit knowledge on information flows
explicitly. In addition, we suggest extending Kruchten’s popular formula [192] by
one more term:

Architectural knowledge =
architectural design + architectural design decision + feedback

Integrating experience exploitation in application development facilitates learning
on several levels: Users are encouraged to act as a Community of Practice and
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learn using the application. Architects learn by getting more feedback and rich
context information. Finally, a company learns by improving its information flow
and communication infrastructure, using information flow models and building
custom-made support for their architects.

Acknowledgements The work on information flow was supported by DFG project InfoFLOW
(2008–2011). Good comments by the editors helped to improve this chapter.
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Chapter 11
AKM in Open Source Communities

Ioannis Stamelos and George Kakarontzas

Abstract Previous chapters in this book have dealt with Architecture Knowledge
Management in traditional Closed Source Software (CSS) projects. This chapter will
attempt to examine the ways that knowledge is shared among participants in Free
Libre Open Source Software (FLOSS1) projects and how architectural knowledge is
managed w.r.t. CSS. FLOSS projects are organized and developed in a fundamen-
tally different way than CSS projects. FLOSS projects simply do not develop code
as CSS projects do. As a consequence, their knowledge management mechanisms
are also based on different concepts and tools.

11.1 Introduction

One should not expect to find in FLOSS the same knowledge management ap-
proaches and tools that are in use or considered in CSS. With respect to the
architectural knowledge views (Chap. 2) the dynamism-centered view requires for-
malization of architectural knowledge and is probably distant from the “spirit” of
OSS which is centered on the creation of source code. Also the requirements-centric
view requires a cohesive team that co-evolves the requirements and the architecture
in an iterative fashion, and therefore is more appropriate for closed development
environments in which the collaboration is more direct. The decision-centric view
seems to be very attractive for FLOSS projects, since the explicit documentation of
architectural decisions’ rationale will enable distant developers to better capture the
essential characteristics of FLOSS projects; however to the best of our knowledge
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it is not currently used (at least not explicitly with tools specific to this approach) in
FLOSS. For several reasons (that we will explain later in this chapter) it seems
that the predominant approach to knowledge management is the pattern-centric
approach.

This chapter attempts to provide answers to such questions, as:

• How do FLOSS processes differ from CSS processes? How are FLOSS projects
organized and managed? Which are the incentives and motivations behind par-
ticipating in a FLOSS project? How is architecture defined, implemented and
assessed in FLOSS? Which is the current understanding about the level of quality
of FLOSS architectures w.r.t. CSS architectures?

• How is quality pursued and achieved in FLOSS in general? How are deci-
sions made for shaping FLOSS architectures? Is there anything like FLOSS
architecture documentation?

• How is knowledge managed in FLOSS in general, who are the knowledge cre-
ation and maintenance mechanisms and tools in FLOSS, is FLOSS knowledge
personalized, codified or both? How is domain AK matched with application
AK? Who are the carriers of AK in FLOSS? How do all these apply to AKM
in particular? What is the role of major software companies that support FLOSS
on a regular basis?

• What should be expected in the future regarding AKM in FLOSS? Which are
the research directions? What are the implications for software architecture
education?

Initially, the chapter discusses briefly the fundamental differences between CSS and
FLOSS processes providing the context for the analysis that follows. Then it pro-
ceeds by briefly discussing software architecture in FLOSS and moves into the core
issue, i.e. how software architectural knowledge is generated, captured and managed
by FLOSS communities. Sources for the chapter material are academic papers and
books, and web resources, such as FLOSS project discussion lists, blogs, wikis, web
pages and white papers, combined with authors’ personal studies and experience
with/on FLOSS, or FLOSS like projects.

11.2 FLOSS Projects in General

FLOSS projects often provide excellent examples of self-organized, successful
projects, producing highly effective systems [119]. They are based on open, self
organized communities of volunteers, who manage to develop, support and main-
tain software effectively. This unique kind of virtual communities provides an
excellent environment for learning how to communicate with, cooperate with and
ultimately learn from other members of the community. Knowledge generation
and sharing [302, 301, 303] is implicit in the everyday operations of FLOSS
communities.

One interesting variation of FLOSS is the so-called hybrid FLOSS projects. Such
projects are initiated and supported by companies that are interested in developing
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the FLOSS system at hand, but want to collaborate with volunteer or paid devel-
opers and users, in order to achieve better results in terms of effort and quality
of development. Hybrid FLOSS projects provide a means for developing software
with mutual benefit, both for FLOSS communities and software companies. Some
of these projects started from companies and were later donated to the FLOSS
community for their further evolution and development.

Another variation of FLOSS projects concerns research originated projects. Such
projects evolve from the research efforts of academics and other researchers to open
source software implementing these efforts. The FLOSS software and the academic
research then co-evolve and contribute “iteratively” to one-another with the FLOSS
software providing useful feedback for “untested” research ideas, and new research
ideas used to point the FLOSS software to initially unanticipated directions.

There are many differences between FLOSS processes and CSS processes. Typ-
ically CSS processes are quite formal, with clearly defined, large scope, phases
and pose many constraints on software development, attempting to impose disci-
pline and produce high quality software products. CSS processes foresee one or
more Architectural phases. As an example the well known waterfall model has
two such phases, namely Architectural Design followed by Detailed Design. How-
ever [122, 68] FLOSS processes are much less formal, with fewer, lower scope
phases, such as fast debugging and releasing. Architecture and design decisions are
handled by the initiator or the core group of developers before opening the source
code to FLOSS participants and therefore are not subject to open discussion and
negotiation [122]. This model of architecture development seems to make certain
views to AKM less “natural” for FLOSS. For example the requirements-centric view
is based in the co-evolution of the requirements and the architecture. However the
bulk of FLOSS developers who are sometimes the source of new and interesting
requirements are not part of the core architecting team or associated with this team
directly.

Software architecture is requirements and quality driven. Major driver for de-
sign decisions in FLOSS is modularity which is necessary in order to divide work
among FLOSS participants. Modularity helps newcomers to locate modules of their
own interest and focus on them, without bothering about other, irrelevant system
architecture modules.

If FLOSS lacks an explicit architecture definition phase and consequently ex-
plicit architectural documentation, then how is architecture defined, implemented
and assessed in FLOSS? The adoption of FLOSS in many organisations has raised
the issue of FLOSS quality evaluation. Due to the nature of FLOSS development
where standard practices include open access to the source code, shared software
artifact repositories, peer review of committed code, asynchronous global develop-
ment and lack of formal support, traditional software quality models may not be
sufficient.

An array of quality models specifically targeted to FLOSS development can be
found in the literature, but most of them are either purpose specific (e.g. they focus
on the business or application domain of the FLOSS system) or require significant
human intervention [273]. However, little attention has been paid up to now for
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assessing high level system architecture in FLOSS. There is definitely space here
for further investigation and research. Software Architecture Reconstruction (SAR)
tools such as those evaluated in [138] can play a significant role in FLOSS projects
which are interested in starting an AKM effort.

11.3 Architecture Knowledge Management in FLOSS

In general it is hard to deal with the issue of architecture knowledge management
in FLOSS. The reason is that there are hundreds of thousands of FLOSS projects
nowadays2. They also differ a lot in terms of procedures followed and constraints
imposed on their participants. Many FLOSS projects, especially the small ones pro-
vide their community with the freedom to work as they wish. However, in large
projects there is more discipline and it is there that architectural knowledge may
gain a lot of attention and is therefore easier to study. In the following section we
present some case studies and we attempt to provide an indicative answer regard-
ing the extent to which architectural knowledge is stored and managed in FLOSS
projects.

11.4 How does Architectural Knowledge Appear in FLOSS?

In many FLOSS projects architectural knowledge appears explicitly in terms of
project documents describing system architecture and providing relevant informa-
tion, such as the rationale behind certain architectural decisions. On the other hand,
there are FLOSS projects (even large ones) where architecture is not described
explicitly and must be inferred from existing documentation or the code itself.

In relation to the different views on architectural knowledge (Chap. 2), we can
recognize that FLOSS follows mainly the pattern-centric view. The main reason
for this is that architectural patterns provide a common vocabulary and frame of
reference to ease architectural knowledge sharing among developers. In the case
of FLOSS this is profoundly important since developers are at different locations,
come from different backgrounds and the communication of architectural knowl-
edge becomes therefore harder. The use of patterns enables conformance of source
code developed by different teams of developers at different locations with the core
architecture of the project. At the same time it eases understanding since architec-
tural patterns and the rationale for their use are well documented and already known
to the developers. Furthermore the extensive literature on architectural patterns
(e.g. [64, 277, 180]) partially counterbalances the often observed lack of documen-
tation in FLOSS projects. For all the above reasons the pattern-centric view is used
(albeit implicitly) in most FLOSS projects.

2 SourceForge alone hosts almost 200K projects at the time this chapter is written



www.manaraa.com

11 AKM in Open Source Communities 203

Two problems often associated with the use of patterns in general, including
architectural patterns are:

1. They are not enforced in the source code and developers can accidentally violate
them while developing their systems. However most FLOSS projects provide
the core architecture and the independently developed components must plug in
this provided framework. In the case of FLOSS, this is not considered a sig-
nificant limitation on the implementation approach however, but rather essential
in the way FLOSS software is developed: the developers must follow precise
rules to achieve interoperation of their source code with the rest of the system
(e.g. implement specific interfaces) which makes accidental violation of the core
architectural patterns more difficult, so this problem is partially solved. At the
same time research efforts that statically enforce conformance of object-oriented
source code with architectural descriptions such as ArchJava [4], might solve this
problem entirely in the future if they become more mainstream and widely used.

2. The second problem with patterns is that their textual description is inherently
not appropriate for the automatic application of patterns in the source code. Re-
search efforts such as the formalization of design patterns [311] and the use of
Model Driven Software Development (MDSD) methods based on rules [49] aim
at solving this problem. However in the case of FLOSS automatic application of
patterns may very well be irrelevant since FLOSS developers often prefer devel-
oping source code as a creative intellectual exercise, rather than using automated
code generation techniques.

Also in terms of AKM we distinguish between the following broad categories of
FLOSS projects:

1. “Pure” FLOSS projects. In these projects AK exists in many forms: wikis,
HTML pages, forums, mailing lists, video casts, podcasts, books etc. (e.g.
Apache HTTP server). Therefore in these projects AK is not managed explicitly
but rather emerges gradually.

2. Hybrid FLOSS projects. In these projects which evolved from a CSS project
usually owned by a company and later evolved to a FLOSS project, there is
an initial core team of developers which has designed the core architecture and
has documented it (e.g. Apache Axis and Jini). The core architecture is usually
well thought with an explicit rationale serving the functional and quality require-
ments of the application, and this contributes in the success that many of these
projects enjoy. Usually these projects use design or architectural patterns as a
vehicle to both achieve desired quality properties and communicate architectural
knowledge.

3. Research originated OSS projects. These projects have evolved from the research
efforts of a research group or research community. AK for these projects takes
the form of research papers and/or books which explain in details the architec-
tural decisions. In many cases such projects have contributed even in the creation
of new architecture standards for their domains, such as the Globus toolkit con-
tribution to the standard architecture for grid computing. Effectively academic
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papers and/or standardization documents serve as documents describing archi-
tectural decisions, which is consistent with the decision-centric view of AKM.
However AKM decision-centric specific tools are not used to formally document
these decisions and trace the decisions to the systems’ architecture.

We see a fruitful ground for application of the decision-centric view of AKM, both
for hybrid and research-originated FLOSS projects. Mature tools, especially web-
based tools such as the Architecture Design Decision Support System (ADDSS)
reported in [67] and Sect. 6.3.3, can be used effectively especially for their advance
groupware support, which can of great use to FLOSS projects.

11.4.1 “Pure” FLOSS Projects: Apache HTTP Server

Let’s consider the case of an important, unanimously considered as successful,
FLOSS project, namely Apache. Such project provides its community of developers
and users with a documentation area in the official project Web site maintained by
Apache Software Foundation3, hosting a wealth of Apache projects. Each project
provides its own documentation area (e.g. documentation for Apache HTTP Server,
considered as an entire subproject4 and a special wiki is dedicated to documenta-
tion5). Various architecture related pieces of information are provided through this
site, for example the standards implemented by various Apache projects6. However,
documentation is mainly meant to support users and not all desirable information
(architecture documentation, design rationale, etc) can be found about the Server’s
architecture.

An online report by O.A. Dragoi,7 reports the conceptual architecture of Apache
Web Server. What is interesting is not the architecture itself8 but the way the re-
port was made: “The conceptual (high level) architecture has been inferred from a
number of Apache related documents and from the way source files are grouped and
named”. Design rationale is also reported, e.g. the rationale “behind having modules
defining handlers for more than one phase is that a module might save internally data
on the request being processed . . . ”.

In other cases, Apache projects do provide explicitly some useful architectural
information. One such example is the Apache Tomcat Server (an implementation
of the Java Servlet and JavaServer Pages technologies) which provides interested
readers with a textual documentation of the description of the Tomcat Server

3 http://www.apache.org/
4 http://httpd.apache.org/docs-project/
5 http://wiki.apache.org/httpd/. For another example of a FLOSS wiki providing architectural
information see http://wiki.zmanda.com/index.php/Software architecture
6 http://projects.apache.org/docs/standards.html
7 http://www.grad.math.uwaterloo.ca/˜oadragoi/CS746G/a1/apache conceptual arch.html
8 Because of http request handling, Apache architectural style is close to ‘implicit invocation’
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architecture.9 In particular, the topics covered are the Architecture Overview, the
Server Startup and the Request Process Flow. However, no documentation is pro-
vided that explicitly justifies the decisions made. Sometimes, documentation is
given in standard diagrammatic form (see for example the UML sequence diagram
for server startup10).

Architecture related information can also be found in books that are easy to find
because the open nature of FLOSS projects provide the opportunity to research, ex-
plore, understand and document independently what has happened or is happening
in those projects. As an example, [28] provides its reader with a short description of
the fundamentals of Apache architecture. Ridruejo [213] is more focused on Apache
and gives also an overview of Apache architecture. Kew [178] is even more to the
point, providing both an overview and a detailed picture. Bits and pieces can also
be found in various Internet freely available resources, such as slides of conference
presentations and consultant firms’ Internet pages.

Because of the lack of formal documentation that is frequently encountered in
pure FLOSS projects, tutorials and other sources of knowledge often appear on an
individual basis, trying to alleviate the problem. One such example is the Apache
Tutor,11 constructed by the author of [178] that, quoting from its home page, “aims
to be the definitive independent online source of help and information for applica-
tions built on the Apache webserver”. It is interesting to note that “Both contents
and interactivity is important, and the software used provides for multiple authors to
contribute to content development, at more than one level” and “All articles are pub-
lished in an interactive framework, and invite comments (annotations) from readers,
as well as online editing.” As with FLOSS code development, the development and
maintenance of these Internet FLOSS knowledge resources is sought to be made on
a voluntary basis.

11.4.2 Hybrid OSS Projects: Apache Axis and Jini

This section discusses two examples of open source software architectures and their
rationale. These particular projects were chosen based on their use of architectural
means to achieve specific quality requirements that are essential for their provided
services. The first such project is Apache Axis which requires flexibility and ex-
tensibility and uses a well-known design pattern to satisfy these requirements. The
second project we discuss is Jini Starter Kit which is an open source implementa-
tion of the Jini specifications. Jini’s architecture is specifically designed to addresses
the challenges of distributed computing [332]. These two projects are examples of
the hybrid OSS project category since they both started from companies and later
became open source community projects. Also in terms of the AKM views, both

9 http://tomcat.apache.org/tomcat-6.0-doc/architecture/index.html
10 http://tomcat.apache.org/tomcat-6.0-doc/architecture/startup/serverStartup.pdf
11 http://www.apachetutor.org/
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projects are examples of the pattern-centric view since they use design and archi-
tecture patterns extensively to achieve specific quality goals and at the same time,
as a side-effect (intended or not) to communicate the rationale of these decisions to
participating developers.

11.4.2.1 Apache Axis

Apache Axis12 is a Simple Object Access Protocol (SOAP) engine. It evolved from
the Apache SOAP project which started as a contribution from IBM of an early
implementation of the SOAP protocol to Apache in 1999.

Essentially Axis processes SOAP messages and can be used in two distinct ways:
as a server and as a client. Used as a client Axis can be embedded in applica-
tions using the Axis API and prepare messages for requests. Used as a server Axis
can processes incoming messages. There is a multitude of transport protocols, web
services protocols and services in which Axis must remain open. Therefore the pre-
dominant quality requirement for Axis is extensibility and flexibility that enables
adaptation in any specific situation. To achieve better extensibility and flexibility
Axis adopted the Chain of Responsibility design pattern [130] for its core part which
handles the processing of messages. With this design pattern the handlers of a call
are arranged in a chain and the call is processed from any handler in the chain which
has the required knowledge and knows how to handle a message.

The consequences of the chain of responsibility design pattern are:

1. The inherently low coupling between the collaborating components, since com-
ponents are not required to know a priori which other components will handle a
request.

2. The flexibility in changing the responsibilities or adding more responsibilities
even at system runtime, by adding more handlers or replacing existing handlers.

3. The handling of a message is not guaranteed if there is not a handler in the chain
that knows how to handle a specific request or if the chain is not configured
properly.

The rationale of the architecture design of Axis is explained in detail in the Axis
Architecture Guide.13 As can be seen in Fig. 11.1, a chain of handlers is a handler
itself by extending the Handler interface and therefore it can be combined with other
chains which contain other handlers recursively.

This allows Axis to contain three chains, global, transport and services, which
contain a number of handlers internally. The Transport chain is responsible for pro-
cessing the transport protocol of a message (e.g. HTTP, SMTP, etc.). Global chains
are applied in all messages regardless of the specific service that is requested. Fi-
nally service chains are the service handlers of messages and contain the application
logic for the processing of a message. In Axis used as a server the sequence of chains

12 http://ws.apache.org/axis/
13 http://ws.apache.org/axis/java/architecture-guide.html
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Fig. 11.1 Handlers and chains in Axis

is first the transport chain, then the global chain and finally the service chain and in
Axis used as a client this sequence is reversed. A chain is an ordered sequence of
handlers. When Axis is used as a server in the service chain the request is serviced
by the service implementation and the flow changes direction from request to re-
sponse. When Axis is used as a client the flow changes direction in the transport
chain. The actual handler which changes the direction of the flow by processing a
request and producing a response (server), or by sending a request and receiving
a response (client) is called the pivot handler. The sequencing of chains, the chain
handlers and the pivot handlers in Axis are depicted in Fig. 11.2.

11.4.2.2 Jini Starter Kit

Jini Starter Kit is an implementation of the Jini technology for distributed com-
puting [83]. Jini specification and implementation were initially developed at Sun
Microsystems and were later released as open source under the Apache 2.0 license
with an announcement from Sun14. Jini is now available as an open source project15.

Jini has a very interesting architecture which addresses many of the issues in-
volved in distributed object computing [332]. Essentially Jini architecture exposes
the differences of distributed object computing to the application programmers in-
stead of attempting to hide them so that local and remote objects are treated the

14 http://www.sun.com/smi/Press/sunflash/2005-10/sunflash.20051019.5.xml
15 http://www.jini.org
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Fig. 11.2 Chains, handlers and pivoting in core Axis message handling

same way. This exposure complicates applications’ programming but the additional
complication is not unnecessary and can in fact be considered essential for the de-
velopment of robust and reliable distributed object applications. More specifically
the differences of distributed computing in relation to local computing include dif-
ferences in latency, memory access, partial failure and concurrency [332]. Jini uses
the concept of a federation of services which come together to achieve a task on be-
half of a user. The dynamic nature of Jini allows services to be added and removed
from the system dynamically at any time. A service can be anything, for exam-
ple a service that prints documents, a service that represents a device, a document
management service etc. Jini provides an infrastructure service, called the Lookup
Service, an application of the Lookup architectural pattern [180], which allows ser-
vices to be registered and later discovered by other services. The Lookup Service is
therefore the bootstrapping mechanism of a Jini system. A service uses first a dis-
covery protocol to discover the Lookup Service and then a join protocol to join the
Lookup Service. As can be seen in Fig. 11.3, a service first emits a multicast mes-
sage looking for a Lookup Service. The service has a service object with a service
interface and is described additionally with service attributes. These attributes will
be later used in addition to the service’s interface from clients looking for services.
The service joins the Jini system by transferring the service object and the service
attributes to the Lookup Service.

A client uses a Lookup Service to request a service with a particular interface
using also additional attributes that describe the required service. A service object
is then downloaded to the client. The client then uses this object to communicate
directly with the service provider as depicted in Fig. 11.4.
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Fig. 11.3 Jini discovery and join protocols

Services in Jini are not assumed to be available for ever since network partitions
and other problems may in fact make them unavailable. Jini applies here the Lease
architectural pattern [180], and uses leases to ensure that registered services are in
fact available. Each registered service is granted a lease and is required to renew this
lease periodically. Failure to do so will result in the removal of the service from the
Lookup Service registry. Leases are also used in other services (besides the Lookup
Service) and can be exclusive, which means that a service can only be used by one
user at a time, or non-exclusive.

Jini also supports distributed transactions that span multiple services as well as
distributed events for asynchronous communication of services.

11.4.3 Research Originated FLOSS Projects: The Globus Toolkit

Globus Toolkit16 is a FLOSS project which provides implementation of standard
grid computing protocols and services. Globus has contributed largely to these
standards.

16 http://www.globus.org
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Fig. 11.4 Client service discovery

The architecture of Globus Toolkit follows the hourglass model. In this model
there is a core of basic services over which global services and applications are
developed. Under the basic services there is an interface layer with local operating
and resource clustering systems (e.g. PBS and Condor pools).

Globus services are grid services which follow the Open Grid Service Architec-
ture (OGSA). The main goal of OGSA is the standardization of the basic services
for grids so that these services are interoperable. OGSA is a set of principles which
describes the way that grid services look and behave, but does not specify the
details for the implementation of grid services and grid containers hosting these
services. The Open Grid Services Implementation (OSGI) is an additional standard
describing all the necessary implementation details.

Globus Toolkit implements the OGSI standard and provides higher level grid ser-
vices which are based on OGSA. As is mentioned in the project’s website: “Since
the release of the Globus Toolkit 3.0, the Globus Project offers an open source
collection of Grid services that follow OGSA architectural principles. The Globus
Toolkit also offers a development environment for producing new Grid services that
follow OGSA principles. OGSA is a product of the Grid community at large, and it
has a major focal point in the Global Grid Forum (GGF). Members of the Globus
Alliance have made significant contributions to the development of OGSA”.



www.manaraa.com

11 AKM in Open Source Communities 211

Globus toolkit is therefore an example of the co-evolution of research and FLOSS
software which also influenced to a large extent the formation of grid standard which
were also adopted by other grid offerings both commercial and open source. The
extensive research publications around Globus and the related publications on the
grid in general which emerged from this work17 constitute a significant body of
knowledge concerning not only the Globus toolkit architecture but also the grid
services architecture in general. Another important aspect of this project is its influ-
ence in grid standards which also constitute a very important form of architectural
knowledge. All these documents constitute an informal type of decision-centric
AKM, however as we mentioned earlier there is not a formal binding or tracing, be-
tween this knowledge and architectural decisions that are implemented in the Globus
toolkit source code.

11.4.4 Architectural Knowledge Resources in FLOSS

We have already seen above that knowledge in FLOSS is mainly stored in commu-
nication media, e.g. wikis, mailing lists and forums. However, occasionally FLOSS
projects provide themselves more dedicated and organized structures that implic-
itly support knowledge management in the FLOSS world. One such example is the
FLUID18 project.

FLUID project is “an open, collaborative project to improve the user experi-
ence of community source software”. In other words, FLUID provides a “living
library of sharable user interface components that can be reused across community
source projects. These components are built specifically to support flexibility and
customization while maintaining a high standard of design quality”. The project site
does not provide just code: it provides also User Experience,19 i.e. a repository of
design models and other resources, tools, and documentation to assist user interface
design and implementation.

Another example of an open community that stores and manages knowledge in
the form of patterns is the Open Management Consortium20. They propose, de-
fine and discuss innovative pattern-based solutions to common problems, such as
the “Adaptive Deployment” and “CodeData Split” patterns. Each pattern initiates a
discussion thread and patterns are specified in templates that consist of predefined
fields. Such fields are Intention, Motivation, Applicability, Structure, Consequences,
Implementation, Known Uses, Related Patterns.

It is interesting to notice that architectural knowledge is maintained also in the
form of Anti-patterns, i.e. patterns that produce a negative effect, theyshould be

17 http://www.globus.org/alliance/publications/papers.php
18 http://wiki.fluidproject.org/display/fluid/Open+Source+Design+Pattern+Library
19 http://fluidproject.org/index.php/user-experience
20 http://openmanagement.org/community/omc
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avoided and whenever they appear, they must be addressed by some counter-
measures. One such Anti-pattern is the “Service Monolith” proposed by Alex
Honor.21

Independent of the activity they generate, these projects are good examples of
how FLOSS world of projects can combine agile and open development processes
with development tools that go beyond the typical configuration management and
bug tracking systems.

11.5 Future Trends and Expectations

What should be expected in the future regarding AKM in FLOSS? FLOSS world
is continuously evolving and software architecture will most probably draw more
attention than today.

The abundance of hybrid FLOSS projects, sponsored by companies, will prob-
ably lead to more organized software development modes. In such a context,
architectural decisions are expected to be more transparent and justified, with the
rationale behind them better explained. As Fidgerald [122] points out, “analysis and
design are expected to be more complex because of the need to address vertical
business domains with hard to meet requirements”. This suggestion leads to more
stringent requirements for software architecture, and therefore renders the need for
better software architecture resources more urgent. It is also reasonable to expect
that such information will be better organized and stored in specific tools to allow
more visibility in the project.

An interesting research direction which is to the best of our knowledge unex-
plored would be to integrate SAR tools with existing and readily available FLOSS
resources such as wikis, mailing lists and so forth. The integration that we envision
is using SAR tools to identify potential problems such as potentially fragile classes
(e.g. due to large number of dependencies) and then automatically seek information
in existing FLOSS resources for these potential problems that may explain their
status. For example [138] refers to an example evaluation of a project using the
JDepend tool, which uncovered a package being both highly abstracted and rela-
tively unstable. This high abstraction seems to imply that the package is intended
for reuse, and therefore its relative instability is particularly problematic. The au-
thors used discussions with the development team to find out why: “In order to
explore this measure, we constructed a set of views around this package and pre-
sented them to the development team. The package turned out to be undergoing
extensive migration from a previous design. In order to accommodate compatibil-
ities with existing packages, the product package had to maintain a high level of
dependencies with other packages. When the migration is complete in near future,
the package will be refactored into several components to improve its modifiability
and reusability” [138]. An example of identifying the “extensive migration” using an
existing OSS resource is to consider the number of recent commits of this particular

21 http://openmanagement.org/community/open standards/omc design patterns
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package classes. This information is available from FLOSS tools. Future research
can identify such “interesting” pieces of information from existing OSS resources
and use SAR integration with these resources in a constructive approach, to produce
architectural knowledge.

One should also expect more FLOSS projects related to software architectural
knowledge to appear. FLOSS communities have proved to be self-sustainable and
continuously evolving. We have already seen a number of FLOSS projects and Web
sites that aim to support FLOSS participants in decision making and managing ar-
chitectural solutions. It is reasonable to expect such projects to flourish in the future.
They will not only produce design resources for FLOSS communities, but they will
also provide a valuable resource for software engineering learners, who are willing
to explore and exploit informal and spontaneous sources of software architecture
information.

The latter consideration provides interesting opportunities for software architec-
ture education. As already mentioned, educating novice software architects is one of
the hardest tasks a software instructor has to face, partially because of the abstrac-
tion needed and the lack of clear understanding of the implications of architectural
decisions. A universe of FLOSS projects that will focus in software architecture
would provide an additional source of education material that can be combined with
formal educational resources, such as course materials and dedicated management
learning systems.

Communicating architectural decisions’ rationale is a very important aspect in
the success of FLOSS projects. It will allow the core architecture team to dissemi-
nate architectural knowledge in a more direct and systematic way to developers. It
will also allow developers to grasp this knowledge much faster and easier. For these
reasons we consider the decision-centric view of AKM a particularly relevant ap-
proach for FLOSS projects. As we mentioned earlier web-based tools for AKM that
support group communication [67] (Sect. 6.3.3) can be tested effectively in FLOSS
projects. Therefore the use of such decision-centric tools for AKM in FLOSS can
be of mutual benefit for both communities (FLOSS and AKM).

11.6 Summary

We have reviewed the software architecture knowledge landscape in FLOSS. Such
endeavor is not easy because of the multitude of FLOSS projects and the many dif-
ferent ways those projects are organized and run. An exhaustive search concerning
this issue in FLOSS is simply not possible. However, to the best of our knowledge,
we have found out that architectural knowledge is indeed present in FLOSS, but in
most cases is not “managed” in the proper meaning of this term, in the sense that
tools and methods used or proposed in closed source are not taken into account in
FLOSS.

In relation to the different AKM views, the pattern-centric view is used (mainly
in hybrid and research-originated FLOSS projects), although its use is implicit.
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However we believe that the decision-centric view with Web-based tools may also
be very appropriate for the FLOSS community, which has a culture of using web-
based tools anyway for many aspects of software development (communication, bug
tracking, etc.)

We have reviewed certain cases in FLOSS where architectural knowledge is at
least stored in some way, available for consultation by interested FLOSS partici-
pants. Typical means for storing information (not only about architecture) in FLOSS
are discussion lists and threads, wikis, forums etc. We have also encountered open
content Web sites that provide resources (in the form of management and design
patterns) for specific application domains, such as user interfaces.

FLOSS belongs clearly to Earl’s behavioural school of knowledge management
(see Table 1.3). In particular, it belongs to the organisational school, focusing on
networks for sharing knowledge, supported by communities, aiming to draw knowl-
edge from a pool of gifted software developers and implicitly redistribute new
knowledge to the community of users and developers through FLOSS mechanisms
and tools.

Another interesting global issue about knowledge management in FLOSS is
the “organisational memory”, mentioned in Chap. 1. The FLOSS universe has a
good organisational memory, because its members esteem one another, and seek-
ing and finding undocumented knowledge pieces becomes natural and welcomed.
While seeking already documented knowledge is considered harmful, because it
simply wastes other people time, asking clever questions and trying to answer
interesting questions is considered as important as (almost) writing good code.
Knowledge providers and mentors receive credits for their support to newcomers
and are considered valued members of the community. In addition, migration from
one FLOSS project to another is free and frequent, and helps a lot towards dissem-
inating knowledge and ultimately in building the FLOSS organisational knowledge
and memory.

Table 11.1 summarizes the Architecture Knowledge Management activities in
FLOSS.

Table 11.1 (Architectural) Knowledge Management activities in FLOSS

Architectural Creation Sharing Distributing Capturing
Knowledge
Management
Activity

Mechanism Core devel- Participation in Posting of archi- Inspection of
opment team project related tectural block di- code and other
decisions discussions agrams and short relevant docu-

text descriptions mentation
Tools Mailing lists, Project Web sites, Configuration

forums, etc wikis, blogs management
tools
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Finally we have speculated about the future of AKM in FLOSS, expecting more
and better AKM infrastructure and richer AKM resources. We have also identi-
fied software architecture education to be greatly facilitated by those increasing
resources in the future.
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Chapter 12
Architectural Knowledge in an SOA
Infrastructure Reference Architecture

Olaf Zimmermann, Petra Kopp, and Stefan Pappe

Abstract In this chapter, we present an industrial case study for the creation and
usage of architectural knowledge. We first introduce the business domain, service
portfolio, and knowledge management approach of the company involved in the
case. Next, we introduce a Service-Oriented Architecture (SOA) infrastructure ref-
erence architecture as a primary carrier of architectural knowledge in this company.
Moreover, we present how we harvested architectural knowledge from industry
projects to create this reference architecture. We also present feedback from early
reference architecture users. Finally, we conclude and give an outlook to future
work.

12.1 Introduction: Middleware Services and SOA
Infrastructure Design in IBM Global Technology Services

This section gives an overview of IBM Global Technology Services and its mid-
dleware service product line. It introduces SOA infrastructures as the technology
domain the case study is concerned with, as well as supporting assets and the
knowledge management strategy employed by IBM Global Technology Services.

In this first section, we briefly review general architectural concepts such as
viewpoints, methods, and reference architectures. Not all of these concepts pertain
to architectural knowledge explicitly; however, they helped us to create and lever-
age such knowledge successfully. An understanding of our usage of these concepts
helps to appreciate the central role of architectural knowledge in the case. As a
reader who is familiar with these concepts and is primarily interested in our usage
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of architectural knowledge, as opposed to its context in the case, you may want to
skip this first section.

12.1.1 Company Overview: IBM Global Technology Services

IBM Global Services is one of the world’s largest business and Information Tech-
nology (IT) services providers. It is a rapidly growing part of IBM; at present, over
190,000 professionals serve clients in more than 160 countries. IBM Global Ser-
vices comprises two major divisions: IBM Global Business Services and IBM Global
Technology Services (GTS) [153]. In this chapter we focus on GTS services which
pertain to IT infrastructure elements such as middleware.

GTS is structured into four business areas: Integrated Technology Services (ITS),
Maintenance and Technical Support Services, Strategic Outsourcing, and Managed
Business Process Outsourcing. These business areas support clients in a number
of ways: Some clients decide to develop and integrate applications themselves; for
such clients, GTS provisions hardware and/or software and provides maintenance
support. Other clients seeks help in the design, implementation, and management
of IT solutions; ITS offers a portfolio of related service products. Finally, turnkey
solutions and management of applications and infrastructure can be provided to
clients through outsourcing and managed services capabilities.

The case study presented in this chapter concerns the ITS business area, which
has a project-centric nature. We focus on SOA infrastructure services delivered in IT
strategy projects, as well as in the architecture, design, and implementation phases
of application development and integration projects.

12.1.2 From Labor-Based to Asset-Based Services: Service
Products and Service Product Lines

The ITS strategy builds on an asset-based business model. ITS ensures a globally
consistent service delivery and a high quality of project results by standardizing its
services as reusable assets [238]. Following this asset-based business model, the
success of a service project is no longer bound to the personal skills and experience
of the individual project team members exclusively, but is ensured by the reuse of
predefined service assets. This is especially important for emerging geographies and
new topic areas in which the skill and experience base has not been fully established
yet.

ITS calls its service assets service products, acknowledging their standardized
nature. This name also conveys the vision of services being developed, packaged,
documented, and maintained just like software products. Service products precisely
define the nature and structure of the professional services in a globally consis-
tent fashion; they codify a significant part of the intellectual property of ITS. The
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portfolio of service products spans a wide range of topic areas such as middle-
ware services including SOA infrastructure design and implementation, systems
and service management consulting and implementation services, but also storage
and server design including capacity planning, health checks and managed ser-
vices [153]. Service products respond to a shift of client preferences from custom
developed and integrated application islands to packaged, integrated, and pretested
end-to-end solutions.

ITS is organized into service product lines. Each service product line owns mul-
tiple related service products jointly targeting a certain technology domain. The
sum of the service products across all service product lines supports rapid, asset-
based project initiation and delivery and enables clients to focus their attention on
the core competencies differentiating them from their competitors; related savings
can be invested in additional revenue-generating capabilities. The service product
lines in ITS complement hardware from the IBM Server and Technology Group
and software from IBM Software Group. This portfolio allows GTS to combine
services, hardware, software, and knowledge of business processes seamlessly and
effectively, which helps to provide the desired end-to-end solutions.

Service products in all service product lines are built through strong investments
in research, intellectual property creation and management, acquisitions, and brand
discipline – all of which are needed to create a competitive portfolio. In this chapter,
we focus on selected SOA infrastructure services which are offered by the middle-
ware service product line. Two examples of service products in this service product
line are “SOA Integration Services – Connectivity and Reuse” and “Design and
Implementation for WebSphere ESB”. We will introduce these service products in
Sect. 12.1.3.

12.1.3 Middleware Service Product Line: SOA Infrastructure
Services

On Service-Oriented Architecture (SOA) [187] projects the architectural views [188]
on a system under construction are synthesized. To do so, numerous functional
and non-functional requirements must be analyzed. During this analysis, functional
requirements are captured as use cases, stories, and business process models; non-
functional requirements concern software quality attributes [157] in areas such
as performance, scalability, and interoperability. During architectural analysis and
synthesis, many architectural decisions are identified, made, and enforced [346].

At the early elaboration points, the conceptual architectures of SOA-based sys-
tems are straightforward to define: They are variations of logically layered two-
or three-tier client-server architectures, which use message passing patterns to let
service consumers and service providers communicate with each other. Workflow
patterns are used to compose atomic services into business process-centric end-to-
end solutions. A service registry can serve as design time or runtime directory of
service providers available to respond to requests from service consumers [344].
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An SOA infrastructure defines the physical viewpoint of an SOA. It concerns the
design, installation, and configuration of middleware components such as Enterprise
Service Buses (ESBs) which are responsible for service request routing, adaptation,
and mediation (brokerage), business process orchestration engines performing ser-
vice composition, and service registries and repositories supporting service provider
publishing and lookup. Individual service consumers and providers of various types
(e.g., business function services and technical utility services) are designed, devel-
oped, and then deployed into such SOA infrastructure, which is supported by an
underlying operating system, server and storage hardware, and network.

Several characteristics make SOA infrastructures challenging to design:

• An SOA infrastructure usually hosts more than one application. These appli-
cations might differ in their non-functional characteristics and might change
over time. An SOA infrastructure has to satisfy the requirements of all hosted
applications and anticipate future change (scalability).

• If the SOA vision of service virtualization is realized (i.e., architectural princi-
ples such as provider location, platform, protocol, and format transparency are
promoted) [344] and the application logic is refactored into a service pool, fixed
application boundaries no longer exist, which makes the infrastructure hosting
the service pool challenging to design: The number of service consumers and the
amount, size, and structure of the service invocation messages are not known up-
front; these volume metrics may even vary over time. The same holds true for
service providers and response message characteristics, respectively.

• There are rich and subtle dependencies between the architectural elements. In
an SOA, there are many service consumers which call composite services and
atomic service providers with the help of ESBs and business process orchestra-
tion engines. These dependency relations often have many-to-many cardinalities.
Sometimes the dependency relations cannot even be specified upfront, e.g.,
when the involved middleware provides dynamic, adaptive service invocation,
integration, and composition capabilities.

• SOA infrastructure may have to be able to support modern development and de-
ployment paradigms such as Web 2.0 mash ups, software as a service, and Cloud
Computing [310]. Such infrastructures face advanced requirements such as multi
tenancy, separation of duties, flexible and measurable Service Level Agreements
(SLAs), and the like.

Examples of related service products are “SOA Integration Services – Connectivity
and Reuse”, “SOA Integration Services – Design and Implementation for Web-
Sphere Message Broker”, and “SOA Integration Services – SOA Healthcheck”. The
first service product concerns service consumer-provider connectivity, the second
one a certain implementation platform for the ESB pattern, the third one the analysis
of an already existing SOA infrastructure.

Client project examples. To illustrate the technical domain of SOA infrastructure
design further, let us briefly introduce two client scenarios now.

An insurance company engaged GTS to construct an SOA and to design and
deploy an integrated value chain for its insurance brokers that would improve
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communication and offer an optimized suite of insurance services. The GTS team
architected, deployed, and implemented a robust SOA infrastructure leveraging IBM
WebSphere software. The solution included an integration of the client’s existing
IBM CICS backend running on zSeries nodes, along with implementation of a clus-
tered pair of IBM xSeries servers running the Microsoft Windows XP operating
system to host a new ESB and service registry platform. With the new integration so-
lution, the client is able to serve its partners and customers more efficiently and has
sharpened its competitive edge. The service product “SOA Integration Services –
Connectivity and Reuse” was used to design and implement the outlined solution.

A world-leading manufacturer of welding systems used SOA to cut its file sup-
port costs by 95% and improve its return-on-capital-employed ratio by working with
GTS to create an integration platform based on IBM WebSphere Message Broker for
Multiplatforms and a CISCO Linux driver. This new mission-critical ESB integra-
tion platform allows the client to automate its delivery and replenishment processes
and to integrate its existing backend system and its new supply chain manage-
ment software. This implementation leveraged the service product “SOA Integration
Services – Design and Implementation for WebSphere Message Broker”.

Having introduced the case study domain both from a business and from a tech-
nical perspective, let us investigate which role architectural knowledge plays in the
case.

12.1.4 Supporting Assets: Methods and Reference Architectures

To support its asset-based business model and the creation and usage of service
products, GTS leverages many supporting assets as carriers of architectural knowl-
edge. In this section, we introduce two particularly relevant types of such assets,
methods and reference architectures.

Methods. IBM Global Services has long recognized the importance of using soft-
ware engineering and architecture design methods [146] to provide repeatable
means of delivering proven solutions and to achieve project success and, in turn,
client satisfaction. A method framework called IBM Unified Method Framework
(UMF) organizes the work performed by practitioners and enables the design and
delivery of end-to-end solutions such as those outlined in the previous section.1

UMF provides prescriptive guidance on “what” needs to be created by a project
team in terms of common work products and “how” to produce these work products
in terms of activities, tasks, and roles as defined in [239].

UMF provides a common language among IBM practitioners delivering solu-
tions to clients, thus providing consistency across solutions. This requires a common
structure: In response to this need, Unified Method Architecture (UMA) defines
a metamodel underpinning UMF. UMA was developed as a common metamodel

1 The predecessor of UMF, the IBM Global Services Method, has been used on client projects
since 1998. The method changed its name several times during this period.
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for the integration of several IBM methods including the Rational Unified Process
(RUP), the IBM Global Services Method, Rational Summit Ascendant, the IBM
World Wide Project Management Method (WW/PMM), and others.

UMA defines a method framework consisting of method content and a process.
UMA represents a consistent and repeatable approach to accomplishing a set of
objectives based on a collection of techniques and practices:

• Method content represents the primary reusable building blocks of the method
that exist outside of any predefined project lifecycle (process).

• The process shows the assembly of method content into a sequence or workflow
(represented by a work breakdown structure) used to organize a project and to
develop a solution. A task is the smallest unit of work in a UMA process; tasks
can be aggregated into activities and phases.

Method content contains the following work products, which define the inputs and
outputs of tasks as method elements:

• Artifacts are tangible inputs and outputs that may come with examples or a pre-
defined template. They serve as basis for reuse. “Use case model” and “software
architecture document” are examples of such artifacts.

• Deliverables are a grouping of task outputs that represent value to a client or other
project stakeholders; typically they are the result of packaging several other work
products for sign-off and delivery.

• Outcomes are intangible results. They are used to convey the completion of
tasks and activities with results that are less tangible than artifacts (e.g., trained
practitioners, installed software, configured system).

Reference architectures. GTS leverages reference architectures [34] to support the
service product development and usage. A reference architecture defines a to-be-
model of and blueprint for solutions recurring in a particular domain. It has a
well-defined scope, specifies the requirements the solutions satisfy, and captures
related architectural decisions. It is the objective of reference architectures to guide
practitioners through the architecture design activities and to communicate related
best practices (e.g., solution building blocks that worked for other practitioners who
encountered similar design problems on already completed projects).

Reference architectures may take different forms depending on their usage sce-
nario and target audience: A reference architecture used by a software vendor to
position products during presales differs from one used by a professional services
firm to divide labor and to exchange knowledge between projects. We use the term in
the latter form, faithful to the vision of Enterprise Solutions Structure (ESS) [252]:
An ESS reference architecture provides a consistent set of officially approved,
method-conformant work products (e.g., design artifacts) for a particular applica-
tion domain and architectural style (here: enterprise applications and SOA). To build
an economy of scale, it is imperative to agree on a particular terminology set and
standardize the structure of and the relationships between the work products (e.g.,
design artifacts). To accomplish these goals, the artifacts in reference architectures
must conform to the notation prescribed by the method employed. In our context,
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UMF recommends the usage of the Unified Modeling Language (UML) [271] for
many artifacts.

Reference architectures take a governing role during service product creation,
ensuring architectural consistency and quality and avoiding undesired overlap.

12.1.5 Architecture Knowledge Management Strategy
and Approach

GTS follows a hybrid knowledge management strategy; both personalization and
codification as defined in Chap. 1 are practiced. Personalization is achieved with
the help of communities of practice [135] and Web 2.0 collaboration tools such as
application wikis [291], but also more traditional forms of technical exchange such
as education courses and conferences. In this case study, we primarily focus on the
codification part of the hybrid strategy. With respect to the architectural knowledge
views discussed in Chap. 2, our strategy primarily reflects the decision-centric view.
Additionally, since the reusable knowledge captured is partly based on existing SOA
patterns, our approach also fits the pattern-centric view.

As outlined in the earlier sections, the codification part of the hybrid strat-
egy is implemented by service products and reference architectures. Both service
products and reference architectures use the work products defined by UMF. The
development and lifecycle management of the service products is governed by an
asset creation approach called Integrated Service Offering Development (ISD). ISD
is both a management system and a process. The ISD management system uses
team-based management [69] for managing investments, portfolios, products, and
projects. The ISD process uses phases and decision checkpoints to drive a project
from initiation to completion. Furthermore, ISD leverages project management
methods to ensure that projects deliver the specified results and that they complete
on time and within budget. During development and lifecycle management, a team
of senior architects assures the technical quality and integrity of the service product
content.

In addition to the centralized ISD model, a supporting decentralized approach
is deployed to be able to leverage the experiences of the entire GTS practitioner
population efficiently: The Community Development Model (CDM) implements a
platform for practitioners from across the company to harvest assets from actual
client engagements which are then centrally vetted, hardened, and contributed to
the community as service product enhancements. CDM focuses on specific assets
identified by service product portfolio managers; contributions are called for regu-
larly. An incentive system is in place. These contributions save effort during service
product development and increase the service product quality. Additionally, CDM
shifts the minds of practitioners towards an asset and reuse culture.

In the remainder of the chapter, we focus on codification. We present one of
the reusable assets we created to implement this part of the hybrid knowledge
management strategy in the middleware service product line of GTS.
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12.2 An SOA Infrastructure Reference Architecture

SOA Infrastructure Reference Architecture (SOAI RA) is the reference architec-
ture of the middleware service product line of GTS. In this section we present the
motivation for SOAI RA and give an overview of its artifacts. We also present an
architectural decision model and an operational model as exemplary artifacts.

12.2.1 Objectives and Artifact Overview

SOAI RA is a primary carrier of codified architectural knowledge for the mid-
dleware service product line of GTS. It is the premier means of coordinating the
creation of the technical content of the service products pertaining to middleware
services (e.g., service products dealing with SOA infrastructure design and imple-
mentation). Using a well-defined set of UMF artifacts, SOAI RA is understood by
all service practitioners (as explained previously, UMF is the method commonly
employed on GTS projects). SOAI RA assumes SOA [187, 344] to be the architec-
tural style of choice and a middleware platform implementing the SOA principles
and patterns to be available. IBM Software Group provides such a platform [154].

Objectives and usage scenarios. The overall objective of SOAI RA is to accelerate
the design and assure the quality of scalable, reliable SOA infrastructures which
host one or more SOA applications. SOAI RA steers the SOA design work with
consistent architectural principles, patterns, and best practices recommendations.

SOAI RA can be used to accelerate the solution outline, macro design, and micro
design phases of a SOA project (these phases are defined in UMF) by shortening
the time it takes to define and build the various architectural artifacts by reusing
(adopting) those already available in SOAI RA.

SOAI RA can also be used to facilitate technology and product selection activi-
ties as its architecture elements may serve as a link between enterprise architecture
efforts [241] and concrete SOA implementations on projects.

Reference architectures are particularly important if an asset- rather than a
labor-based strategy for service delivery is in place. As already outlined, GTS has
such strategy. In this setting, another objective of SOAI RA is to ensure architec-
tural consistency and compatibility between the service products: Service products
such as “SOA Integration Services – Connectivity and Reuse” and “Design and
Implementation for WebSphere ESB” must complement each other.

SOAI RA can also be applied to engagements that do not use any service
product, speeding up project delivery with templates and examples for important
architectural artifacts and reducing technical risk through best practices reuse.

Artifact overview. SOAI RA follows a Model-Driven Development (MDD) [331]
approach, making use of the UML [271] tools IBM Rational Software Modeler and
IBM Rational Software Architect [154].

A dual reference architecture consumption strategy is in place: SOAI RA users
can work with the models directly. Alternatively, they can study exported and
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generated reports, which are available in textual form (i.e., HTML and PDF
documents). SOAI RA concentrates on models for the following UMF artifacts:

• System context
• Use case model
• Non-functional requirements
• Architectural decisions
• Logical Component Model (CM)
• Physical Operational Model (OM)

The system context diagram shows the major relationships to external systems and
resources that are leveraged within SOAI RA. When UMF is employed, UML or
informal rich pictures are used to create system context diagrams. The Use Case
Model (UCM) captures how practitioners work with SOAI RA, but also shows how
humans users or applications interact with an SOA infrastructure (use case is a UML
term). Non-Functional Requirements (NFRs) define the quality attributes [157] of
the system and the constraints under which the system must be built. Constraints are
technical limitations imposed upon a solution by external forces. NFRs are typically
captured in free form or in structured text. In SOAI RA, the NFR artifact specifies
selected quality attributes to consider on SOA projects, e.g., interoperability.

Logical component modeling per se is the responsibility of an application ar-
chitect, often based in a professional services firm such as IBM Global Business
Services, providing business analysis, design and development services (among
others). The SOAI RA component model captures the application and middleware
components that are relevant for SOA infrastructure design: When creating a spec-
ified OM (see below), infrastructure architects must have an understanding of the
logical components hosted by the infrastructure under design. UMF recommends
using UML component and/or profiled class diagrams as CM notation.

The Operational Model (OM) is a key artifact in SOAI RA. UML or informal
rich pictures are commonly used to create OMs. SOAI RA provides a conceptual
OM and a specified OM; it does not go down to a physical OM level of elaboration.
The two SOAI RA OMs serve as an umbrella for and bridge between the physical
OMs which are defined in service products.2

Architectural decisions is another key work product in SOAI RA. For SOAI
RA we adopted the metamodel and the decisions from the SOA Decision Modeling
(SOAD) project [347]. Unlike most reference architectures, SOAD captures the deci-
sions to be made during adoption of the reference architecture on a particular project
(which we refer to as design issues), not those already made during the creation of
the reference architecture (decision outcomes). This focus shift helps to tailor SOAI
RA according to project needs: Not all SOA infrastructure design projects require

2 The three-level OM hierarchy supports an iterative and incremental refinement approach to
infrastructure design, which is in line with the advice given by common architecture design meth-
ods [146]. For instance, a technology-neutral design of locations, nodes, and deployment units
(conceptual OM) should be established before platform-specific ESB communication protocols
and products such as HTTP or Java Massage Service (JMS) are selected (specified OM) and
configured in the selected ESB product (physical OM) [80, 342].
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Fig. 12.1 SOA Infrastructure Reference Architecture overview

all SOAD decisions as not all SOA patterns such as ESB, service composition, and
service registry are always used. Selecting such patterns and related implementation
platforms is part of the decision making.

Figure 12.1 illustrates the artifacts and viewpoints in SOAI RA. For instance, the
system context, the use case model, and the NFR artifacts all belong to the scenario
viewpoint in Kruchten’s 4 + 1 view model [188], whereas the CM belongs to the
logical viewpoint and the OM to the physical viewpoint.

The figure also shows that architectural decisions are not only used in their tradi-
tional role of capturing design rationale and decisions made, but also to organize the
reference architecture. Bidirectional links to and from the level 1 CM and the con-
ceptual OM are maintained. We provide more information about this central role
of the decision model and the three levels of architectural decisions (conceptual,
technology, and vendor asset level) in Sect. 12.2.2.

12.2.2 Decision Viewpoint: SOA Decision Modeling

SOAI RA adopted the results of the SOA Decision Modeling (SOAD) project.
SOAD is an industrial research and knowledge engineering project we have been
conducting since January 2006. It has three project objectives and types of results:

1. Defining the concepts of a decision-centric architecture design method, e.g.,
a knowledge domain metamodel optimized for reuse and collaboration. These
concepts are introduced in separate publications, e.g., [347].
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2. Providing reusable decision content (architectural knowledge) for SOA projects
taking the form of a Reusable Architectural Decision Model (RADM) for SOA
which is instantiated from the metamodel. Its content originates from several
large-scale SOA projects conducted since 2001. Excerpts from this RADM are
featured in other publications, e.g., [347]. The full model became part of SOAI
RA.

3. Demonstrating how the decision modeling concepts can be implemented and
how the decision content can be managed collaboratively with the help of a tool.
Architectural Decision Knowledge Wiki [229], made publicly available in March
2007, serves this purpose.

We now review the SOAD concepts, content, and tool contributions that are partic-
ularly relevant within the context of our case study and this chapter [347].

Concepts. The knowledge domain metamodel is the SOAD concept most rele-
vant for this case study. It remained stable since September 2006 except for minor
revisions such as renaming classes and attributes.

We distinguish decisions made and decisions required to facilitate reuse: An AD-
Issue instance informs the architect that a single architecture design problem has to
be solved. ADAlternative instances then present possible solutions to this problem.
ADOutcome instances record an actual decision made to solve the problem includ-
ing its rationale. Closely related ADIssues are grouped into ADTopicGroups, which
form a hierarchy. Dependencies between ADIssues are modeled as a dependsOn as-
sociation; in [347], we define more dependency relations. The metamodel is shown
in Fig. 12.2.

Fig. 12.2 SOAD metamodel (Source: [347])
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ADIssue and ADAlternative provide reusable, project-independent background
information about decisions required: The problemStatement characterizes an AD-
Issue on an introductory level, while backgroundReading and knownUses point to
further information. The decisionDrivers attribute states types of NFRs, including
software quality attributes and environmental constraints such as budget and skill
availability; the patterns community uses the term forces synonymously. The role
and phase attributes serve as a link to methods such as UMF. A recommendation at-
tribute conveys subjective information, which may be a simple rule of thumb (“best
practice”), a weighted mapping of forces to alternatives, or a pointer to a more
complex analysis process to be performed outside the decision model. The recom-
mendation should refer to decision drivers and pros and cons of alternatives. With
the backgroundReading attribute, supporting material such as primers and tutorials
can be referenced.

ADOutcome instances capture project-specific knowledge about decisions made:
The justification information refers to actual requirements (“sub-second response
time in customer interface”), as opposed to the ADIssue-level decision drivers which
only list types of requirements (“performance, i.e., response time and through-
put”). These two aspects of the knowledge have different reuse characteristics: the
ADIssue information has even more reuse potential then the project-specific AD-
Outcome rationale. A second reason for factoring out ADOutcome as a separate
entity is that the same ADIssue might pertain to many elements in a design model,
e.g., business processes and service operations in SOA. Therefore, types of logical
and physical design model elements are referenced via the scope attribute in the
ADIssue. ADOutcome instances then are created dynamically on projects, and can
refer to design model element instances via their name.

To give an example, a business process model might state that three “customer
enquiry”, “claim check”, and “risk assessment” business processes have to be im-
plemented in an insurance industry case. One ADIssue is to select an INTEGRATION

TECHNOLOGY to let the business activities in each of the three business processes
interact with other systems, with ADAlternatives such as WEB SERVICES and
RESTFUL INTEGRATION. Problem statement (“Which technology should be used
to let the business activities in the business process communicate with Web ser-
vices and legacy systems?”) and decision drivers (“interoperability”, “reliability”,
and “tool support”) are the same for all three business processes. Hence, it is suffi-
cient to create a single ADIssue instance which has a “business process” scope. This
value refers to a SOA-specific type of design model element.

Project-specific decision outcome information such as the chosen alternative and
its justification depends on the individual requirements of each process, e.g., “for
customer enquiry, we decide for WEB SERVICES as Java and C# components have
to be integrated in an interoperable and reliable manner, and we value the avail-
able tool support” and “for risk assessment, we select RESTFUL INTEGRATION

because not all of the involved backend systems provide a SOAP message interface
described by a WSDL contract”. Hence, three ADOutcome instances are created
and associated with the same ADIssue. These instances capture the process-specific
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Fig. 12.3 Layers and levels in RADM for SOA (Source: [347])

decisions and their rationale. They refer to the actual business processes in their
name attributes (“customer enquiry”, “claim check”, and “risk assessment”).

Content. The RADM for SOA is organized into levels and layers: An overarching
executive level comprises issues regarding requirements analysis and technical de-
cisions of strategic relevance. A conceptual level, a technology level and a vendor
asset level follow [347]. Architectural layers further structure the RADM. Fig-
ure 12.3 shows the resulting model structure (each box represents an ADTopicGroup
comprising ADIssues dealing with the same topic area on one refinement level).

The same top-level topic groups are defined on the conceptual, the technology,
and the vendor asset level. The level and topic group hierarchy serves as a table
of decision model content. The hierarchical structure is motivated by our observa-
tion that the technical discussions during SOA design often circle around detailed
features of certain vendor products, or the pros and cons of specific technologies,
whereas many highly important strategic decisions and conceptual concerns tend to
be underemphasized. These discussions are related, but should not be merged into
one; they reside on different refinement levels. Separating design concerns in such a
way is good practice; e.g., RUP recommends a similar incremental approach for
UML class diagrams used as design models. We adopted this recommendation
for decision models and made the three refinement levels explicit in the RADM
for SOA.

There are topic groups for seven logical SOA layers, consumer, process, service,
component, resource, integration, and QoS layer, which are introduced in [20]. Two
topic groups on each level contain issues pertaining to the logical and physical view-
point that can not be assigned to any layer. The model can be tailored and irrelevant
parts removed, e.g., if only issues dealing with processes, but not issues dealing with
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Fig. 12.4 Sample issue and alternatives in SOAI RA

ESB integration are of interest in a particular project context. About a dozen subject
area keywords are defined and expressed as topic tags, e.g., “session management”,
“transaction management”, “workflow”, and “error handling”.

Figure 12.4 is an excerpt of an ADIssue description in the RADM for SOA. The
issue deals with the INMESSAGEGRANULARITY of a service operation. This issue
qualifies as a an architectural decision to be included in the RADM for SOA, as its
outcome has a significant impact on the quality attributes of the SOA-based system
under construction and the issue recurs for each service operation.

In many cases, the ADAlternatives of an ADIssue in the RADM for SOA refer
to an already existing patterns, e.g., those documented by Buschmann et al. [64], by
Fowler [126], or by Hohpe and Woolf [148]. In this case, no patterns are available
yet; we plan to publish the descriptions of the issue and its pattern alternatives (DOT,
BAR, DOTTED LINE, and COMB) in the future.

At present, the RADM for SOA consists of 86 ADTopicGroups and 389 ADIs-
sues with about 2000 ADAlternatives. The knowledge base is still growing, now at
a slower pace than in the beginning of the project. While this growth could continue
infinitely, we plan to freeze the knowledge engineering once the 500 most relevant
issues have been compiled. The knowledge base will still have to be reviewed pe-
riodically to ensure that the contained information remains up to date. Issues and
alternatives will become obsolete as technology evolves; new ones will be required.
The SOAD level and layer structure helps to organize these activities and reduce
the related effort; conceptual knowledge dates at a slower pace than that on the
technology and on the vendor asset level.

Tool. Architectural Decision Knowledge Wiki is a Web-based collaboration system
and application wiki which implements the SOAD metamodel as well as additional
concepts. It supports about 70 use cases. The tool is featured in [291, 347].
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12.2.3 Physical Viewpoint: Operational Model

Applications employing SOA as their architectural style require a reliable SOA
infrastructure which complies with the corporate-level technology standards and
runs inside existing or new operating environments such as datacenters. The IT
organizations of enterprises must provide such SOA infrastructures.

SOA infrastructures must be able to support the development, deployment, and
management of service consumers and providers, and host SOA middleware such
as ESBs, business process orchestration engines, service registries, but also compo-
nents in application servers which implement service consumers and providers in
some programming language (e.g., BPEL, C#, or Java).

The Operational Model (OM) in SOAI RA is positioned to rapidly design such
SOA infrastructures, and plan the capacities of the underlying hardware (i.e., server
and network resources). Examples of such hardware capacity aspects are CPU
speed, main memory size, disk space, and network adapter capacity (throughput).

An OM may be defined for a particular IT system, designed to meet specific
functional and non-functional requirements. An example is a WebSphere Process
Server [154] environment required to support service composition (business process
choreography) in a Customer Relationship Management (CRM) solution. In such a
case, the specified OM (see Sect. 12.2.1) defines all functional and non-functional
characteristics of the model elements, while the physical OM provides a detailed
configuration and capacity plan, which serves as a blueprint for the acquisition,
installation, and subsequent maintenance of the infrastructure resources (i.e., server
hardware, network equipment, and middleware).

In a reference architecture context, an OM can describe a template of how
(parts of) an IT infrastructure may be constructed in order to satisfy some gen-
eralized set of functional and non-functional requirements. In this case, the OM
leaves placeholders, requiring tailoring and integration with other partial OMs to
satisfy a particular set of concrete requirements. The purpose of such a generalized
OM may be to support enterprise-wide standardization of all SOA infrastructure
environments (e.g., WebSphere Process Server). Such standardization simplifies
procurement, education, and systems management.

SOAI RA adopts the OM notation and terminology defined in the IBM Archi-
tecture Description Standard (ADS) [342] and the OM technique defined in IBM
UMF [80]. Hence, three perspectives are taken during the design of the OM in SOAI
RA, answering the following questions:

• Which network zones are given or required (e.g., locations, security zones created
by application gateways and transport-level firewalls)?

• Which hardware nodes appear in these network zones?
• Which presentation, execution, and data deployment units are deployed on these

nodes to host application and middleware components?

As motivated in the SOAI RA overview above, SOAI RA contains a conceptual OM
and a specified OM; the physical OM has to be developed on each project adopting
SOAI RA. Hence, SOAI RA provides zone, node, and deployment unit definitions
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Fig. 12.5 OM to (SO)AD linkage in SOAI RA

at the conceptual level and details those by adding NFR and other information at
the specified level. Figure 12.5 is a screen caption of a UML class diagram in
IBM Rational Software Modeler. The classes are annotated with a stereotype called
�ConceptualNode� which indicates that they represent an OM concept. The
nodes host deployment units, which correspond to SOA infrastructure elements. For
instance, the “application server node” hosts a “service integration bus” unit.

Figure 12.5 also shows that nodes in the conceptual OM are linked to SOAD is-
sues, which are made available via the Architectural Decision Knowledge Wiki tool
(as introduced in the SOAD overview in Sect.12.2.2). In the example, the applica-
tion server node in the conceptual OM has issues such as COMPONENT CONTAINER

ASSET and WEB SERVICES PROVIDER ASSET attached. This link between OM el-
ements and SOAD issues is a key feature in SOAI RA: It uses the scope attribute
defined in the SOAD metamodel introduced previously.

We follow the same approach to link logical components and related issues.
With this approach, we make architectural knowledge available in the tool the ar-
chitect works with during design; however, we do not model the rather rich issue
descriptions in the same UML model, but couple architecture elements and related
issues loosely to ensure flexibility and usability of the two parts of the architectural
knowledge, logical CM and physical OM on the one hand (design artifacts) and
architectural decision knowledge on the other hand (rationale).
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12.2.4 Summary of Approach and Benefits

The UMF artifacts in reference architectures represent the recommended architec-
tural to-be model to begin with (and aim for) when delivering service projects. They
codify many lessons learned and best practices from projects around the world. To
harvest such lessons learned and best practices, project-specific deliverables get as-
sessed for applicability, are quality assured, sanitized, and hardened into artifacts
generally reusable in similar projects. In short, reference architectures are a way to
make collective project experiences and knowledge explicit and available to a wide
audience, i.e., all GTS practitioners.

Reference architectures pave the way for the consistent development of differ-
ent service products. SOAI RA is the reference architecture of the GTS middleware
service product line; it makes service products combinable. This is important since
client projects can become quite large and complex and often deploy more than a
single service product. SOAI RA and other reference architectures not only make
service products combinable, but also offer an integrative approach across IBM
hardware, software, and services products: They simplify the end-to-end solution
design by establishing modeling standards (e.g. naming conventions), which are
also shared between presales and project delivery functions.

GTS practitioners benefit from SOAI RA in several ways: First and foremost,
they learn from experienced peers how to model a solution, how to create the
artifacts required by UMF, and how to design an SOA infrastructure properly (edu-
cation use case). In this regard, a reference architecture codifies tribal knowledge.

A reusable asset that meets the wants and needs of practitioners and is easy to
adopt can increase productivity: In particular, SOAI RA aims to accelerate the early
project activities, allowing practitioners to tailor the provided artifacts according
to the client-specific requirements and project context they are confronted with.
The more of the hard design and modeling problems have already been solved in
a reusable, standardized fashion, the more time practitioners can spend with their
clients to resolve the particularly relevant, case-specific design issues.

Furthermore, reference architectures have a quality assurance effect: Best prac-
tices from projects around the world are captured in the reference architecture.

Moreover, SOAI RA improves collaboration both within GTS and across IBM
lines of business: It facilitates the knowledge exchange between projects and within
a community of practice by establishing a common vocabulary.

Finally, the model-driven approach in SOAI RA opens the door to automation:
Due to the standardization of target architecture, it becomes possible to generate
parts of the code and deployment artifacts directly from the models.

Having summarized the motivation, anatomy, and benefits of SOAI RA, let us
now present how we harvested its architectural knowledge from projects. We will
return to the benefits when presenting user feedback in Sect. 12.4.
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12.3 Harvesting SOA Decision Knowledge from Projects

In this section, we give an overview of the architectural knowledge engineering ac-
tivities we conducted to create the Reusable Architectural Decision Model (RADM)
for SOA used in SOAI RA. We also define a four-step process and related guidance
to syndicate architectural decision knowledge from projects.

12.3.1 Sources of Architectural Decision Knowledge

The first source of input for the RADM for SOA was personal project experi-
ence [345, 348]. As a second step, we factored in selected architectural knowledge
from projects technically led by peers, leveraging a company-wide SOA and Web
services practitioner community with more than 3500 members. We screened sev-
eral hundred architectural decisions from more than 30 projects from several ge-
ographies and industries. A third type of input was systematic literature screening,
e.g., SOA and patterns books, technology introductions, and vendor documentation.

Originally, we had employed an ad hoc approach to incorporating these sources
of input. This ad hoc approach to asset harvesting turned out to be more labor intense
than originally anticipated: We were tempted to fix quality problems straight away,
adding our own expertise prematurely. This approach did not scale and did not pro-
duce a satisfying model. Hence, we switched to a systematic approach. It consists
of a basic four-step knowledge harvesting process and related decision modeling
guidance.

12.3.2 Architectural Knowledge Harvesting Process

To overcome the limitations of our original ad hoc approach, we followed four
knowledge harvesting steps. Figure 12.6 illustrates these four steps, which we call
Review, Integrate, Harden, and Align (RIHA):

These steps are characterized as follows:

1. In the review step, raw input from completed projects (decisions made) is
screened. This has the objective to assess the relevance and quality of the in-
put. ADIssue and ADAlternative instances for all decisions that are decided to
be included in the RADM are created.

Review
Raw Input

Integrate
Into RADM

Harden
New Content

Align With
Other Content

Fig. 12.6 Four-step knowledge harvesting process (RIHA)
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2. In the integrate step, existing information in the raw input is copied into appro-
priate attributes defined in the SOAD metamodel (see later).

3. In the harden step, the issue is decomposed if necessary, e.g., if there is a violation
of the level structure because concepts, technology characteristics, and product
features are covered in a single ADIssue. Moreover, the issue and alternative
information is completed in this step, for example with less obvious alterna-
tives, missing pros and cons, additional decision drivers, and additional decision
dependencies. The contributing project might have to be contacted to clarify
certain aspects.

4. In the align step, the new model element is reviewed and edited for readability
and consistency with already existing parts of the model.

It is worth noting that it is possible to iterate and harvest knowledge incrementally,
although Fig. 12.6 seems to suggest a linear process.

12.3.3 Guidance for the Four RIHA Process Steps

Review step. During the review step, two qualification criteria are applied to decide
whether an issue should be included in a RADM:

1. The first criterion is the reuse potential: Is a real architecture design problem
described, does the raw input qualify as an architectural decision? Does a can-
didate issue pertain to one of the principles and patterns defining SOA as an
architectural style? Does it present real alternatives? Will it recur, i.e., does it
have sustainable, long lasting character or is it a tactical or temporary decision?
Does it avoid to reference proprietary features or characteristics?

2. The second criterion is technical and editorial quality: Is the issue technically
sound, particularly the justification for the chosen design? Did the contributing
project succeed? Does its description read well? Is established terminology used,
e.g., are the referenced design model elements defined in the literature? Can issue
and outcome be separated from each other?

A high reuse potential as indicated by the answers to the questions regarding the
first criterion is mandatory. If there are doubts about the technical quality of the
candidate issue, it is not used; the editorial quality can be improved with reason-
able editing effort if there is a strong need for the issue (e.g., high reuse potential).
The contributing practitioner may be contacted in such a case to obtain additional
information about the circumstances under which the decision was made.

Integrate, harden, and align steps. When integrating and hardening knowledge that
qualifies for inclusion in the RADM, the raw input is mapped to the SOAD meta-
model as indicated in Table 12.1 (transitioning from decisions made to decisions
required).

In [347], we define quality heuristics for architectural decision models, which ad-
vise on the number of nesting levels and how to work with the logical and temporal
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Table 12.1 ADM to RADM attribute mapping during asset harvesting

Knowledge Raw input RADM for SOA SOAD attributes and
type from project content further comments

Problem Outcome (often has an ADIssue Problem statement, back-
embedded issue) ground references

Solution Chosen alternative ADAlternative Description, known uses
Rationale Justification ADIssue Recommendation
Rationale Justification ADIssue Decision drivers, pros and

cons of alternatives from
“because” sentence in
justification

Requirements link Assumptions ADIssue Decision drivers
Dependencies Consequences, related Related decisions Dependency types in [347];

decisions often missing in raw input
Scoping Decision name, design ADIssue scope attribute

model references
Method linkage Timestamp, decision ADIssue phase, role attributes

maker

dependency relations defined in that paper. We now present several additional
guidelines. All of these are suggestive rather than normative.

A meaningful name for the issue must be found. The patterns community advises
us that finding good names is essential when creating a pattern language, but also
hard; the same holds for issue and alternative names. Names should be compact, but
expressive. They must be self-explaining, e.g., when appearing in a tool that does
not display any other attributes in a particular view. Names should be generic so that
they do not to have to be changed often, but also be expressive so that they can serve
as identifiers for issues and alternatives in the RADM. The entire description of an
issue and its alternatives should adopt the terminology established by the principles
and the patterns defining SOA as an architectural style.

All alternatives listed for an issue must solve the same problem. As a conse-
quence, all alternatives must reside on the same refinement level, e.g., conceptual
and technology alternatives are assigned to different (but related) issues. The alter-
natives of an issue should be disjoint and unambiguous to make solutions compara-
ble and support code generation as an additional form of decision enforcement in an
MDD context [346]. They should catch all known mainstream solutions as well as a
few exceptional ones that have been applied in practice. If a solution is known under
several names (e.g., facade and wrapper pattern), the alias names should be listed in
the description attribute. By convention, the alternatives are ordered from common
and recommended to exceptional; if present, fallback alternatives such as CUSTOM

CODING or OTHER LANGUAGE appear last. The same ordering scheme should be
applied consistently for all issues. A “good enough” approach is followed; it is not
a primary goal to be complete. The accuracy of the knowledge has higher priority
than its quantity.

The information about decision drivers should use a consistent vocabulary. An
established NFR or quality attribute taxonomy should be used. It may originate
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from enterprise architecture guidelines [241] or an industry standard such as [157].
The more homogeneous and consistent the vocabulary is, the simpler it becomes to
tailor the model and to use it during the decision making. For instance, consistently
named decision drivers can easily be searched for in the decision model, and deci-
sion support systems and tradeoff analysis methods can be applied seamlessly when
resolving one or more of the issues in the decision model. Some examples of valid
decision drivers are:

• Functional and nonfunctional requirements, e.g., as described in other artifacts in
a reference architecture.

• General quality attributes from software architecture and software engineering
literature and forces in pattern books.

• Decisions made earlier, for example prior to project initiation.
• Architectural principles that have been stated for an industry, the company, a line

of business (domain), or the current project.
• Non-technical influence factors such as education needs, license cost, available

skills, and experience in the project team.

The recommendations attribute in the ADIssue class in the SOAD metamodel
should refer to the decision drivers. The same holds for the pros and cons infor-
mation in the ADAlternative class and, later on when capturing decisions, for the
justification attribute in ADOutcome instances.

According to our experience, descriptions of issues and their alternatives should
not exceed 1,000–1,200 words or one to three HTML pages in a generated report.
Longer descriptions are difficult to display in a user-friendly way and time con-
suming to study. If more information is required, the issue should summarize the
problem and refer to a separate document via the background reading attribute.

Subjective information must be clearly separated from objective information.
The SOAD metamodel has been designed to facilitate this separation (e.g., objec-
tive decision drivers vs. subjective recommendation). The writing style and editing
quality must meet professional standards, e.g., be informative and accurate, but also
keep the reader interested. According to our experience, a suggestive tone has higher
chances to succeed than an authoritative one: The asset consumer should have the
impression that the RADM intends to help and provide orientation in a complex
problem and solution space, not to create additional, unnecessary efforts or technical
complexities.

Additional decision capturing advice is available in the documentation of Archi-
tectural Decision Knowledge Wiki [229].

12.4 Consuming SOA Decision Knowledge

In this section, we discuss our own experience with the SOAD concepts and the
RADM for SOA content, as well as feedback from early adopters of SOAI RA.
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12.4.1 SOAD Usage during Creation of SOAI RA

Usage of SOAD within the SOAI RA project made evident that architectural de-
cisions recur: Another SOA reference architecture project had already compiled a
draft version of an architectural decisions artifact, which we received in January
2007. It captured 50 decisions and 42 of these decisions were already covered by
our RADM for SOA which at that time contained about 100 issues.

The model-driven approach of SOAD was seen to be superior to text template-
based decision capturing. From a tool perspective, filtered report generation was an
important feature (easing reviews and reference architecture customization). Unlike
previous reference architectures that only capture decisions made during reference
architecture development (outcomes), SOAD documents the decisions required dur-
ing adoption of the reference architecture (issues). This distinction caused some
misunderstandings because we had named the issue an “AD” initially; after the
renaming, the separation of problem and solution was welcomed.

Depth, breadth, and technical quality of the RADM for SOA content were ac-
knowledged and appreciated by the reviewers. One early action point was to explain
the level and layer structure in detail; consumers of the SOAI RA can not be as-
sumed to be familiar with these concepts (even if they are standard concepts in
MDD and software architecture). To do so, we authored supporting documentation
and added the topic group hierarchy to the architectural decision report generation
feature in the Architectural Decision Knowledge Wiki tool. To make the position in
the hierarchy clear in the issue name, we defined naming conventions.

Early users appreciated the knowledge captured in single issues and alternatives,
but struggled to stay orientated when being confronted with several hundred issues,
even when being supported by the scope, phase, and role attributes and the decision
topic hierarchy in the Architectural Decision Knowledge Wiki tool. As a second step
after having added the attributes, we provided additional search, filter, and export
capabilities for ease of orientation and consumption. Finally, we added concepts
such as entry points and decision status management based on the modeled decision
dependencies. These concepts are explained in detail in [347].

12.4.2 User Experience with SOAD and SOAI RA

SOAD has been used on ten industrial SOA projects so far. Architects reviewed up
to 200 out of 389 issue descriptions and reused up to 50 issues during their decision
making on projects. Acceleration of the design activities and quality improvements
were reported on these cases; all practitioners welcomed vision and approach of
SOAD. Architectural Decision Knowledge Wiki was downloaded from IBM alpha-
Works more than 630 times (the download is free of charge; registration is required);
220 users are registered in an IBM internal hosted instance. The RADM for SOA
was transferred to four IBM lines of business.
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Experience with SOAD concepts (metamodel). The fundamental hypothesis that ar-
chitectural decisions recur if the same architectural style is employed on multiple
projects in an application genre was confirmed numerous times. We interacted with
several hundred architects during the project. Only one of them disagreed, which
turned out to be a misunderstanding: We do not claim and require that the decision
outcome always is the same; only the issue, expressing the need for a decision and
the related background information has to recur to make SOAD work.

The attributes in the SOAD metamodel were rated well. They were seen to
be understandable intuitively, conveying useful information, and giving enough
information about the aspects of a decision that matter during decision making. A
few additional attributes were suggested, for instance the organizational reach of a
decision.

While the concept of refinement levels was acknowledged, the four levels in the
RADM for SOA were not seen to be the only solution. Other model organization
schemes such as architectural viewpoints and panes as defined by The Open Group
Architecture Framework (TOGAF) [241] were suggested. Decision dependency
management was seen as important differentiator of SOAD.

Experience with SOAD content (RADM for SOA). Model scoping and the level of
detail on which individual decisions are represented in the RADM for SOA were
appreciated and seen as appropriate (i.e., issues modeled that are not obvious or
trivial, captured knowledge relevant on SOA industry projects and documented in
an understandable way). Acceleration of decision identification and improved de-
cision making quality were reported. In one case, the effort for the creation of a
SOA principles deliverable decreased from eight to five person days because thir-
teen out of fifteen required decisions were present in the RADM for SOA and could
be reused.

Some confusion regarding proactive vs. retrospective decision modeling oc-
curred; one user simply copied the issue descriptions and the recommendation
attribute in the RADM to outcome instances in his deliverable. This caused neg-
ative feedback from a senior architect in a team-internal quality assurance review.
We can conclude that the writing style has a significant impact on the success of a
RADM. User expectations must be managed; SOAD is not designed to make archi-
tectural thinking obsolete. Project-specific requirements and RADM content must
be matched.

A rollout to additional, non-SOA application domains such as archiving solutions
and systems management is planned.

Experience with tool (Architectural Decision Knowledge Wiki). The user feedback
regarding the value of Architectural Decision Knowledge Wiki was encouraging:
users appreciated that all knowledge required during architectural decision making
can be conveniently located in a single place and that the system comes with a
set of initial content (i.e., samples and decision modeling guidance). The realized
use cases were seen to be meeting practitioner wants and needs. The presentation
of ADIssues, ADAlternatives, and ADOutcomes on a single HTML page received
positive reactions. However, users reported that they found it rather difficult to orient
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themselves and navigate in large models. In early versions, the static topic group
hierarchy was the only order defined; the decision dependency relations were not
fully leveraged at that point. Additional visual elements were requested, as well as
a closer integration with other tools for architects.

12.5 Summary

In this chapter, we presented SOA Infrastructure Reference Architecture (SOAI
RA) as a resuable asset supporting SOA infrastructure design, a basic process for
harvesting architectural knowledge from industry projects, related decision model-
ing guidance, and usage experience with the asset. SOAI RA is a primary carrier
of architectural knowledge in the middleware service product line of IBM GTS;
it implements the codification part of the hybrid knowledge management strategy of
GTS.

Many challenging NFRs and other forces have to be met in SOA infrastructure
design. They conflict with each other and keep on changing; many of them remain
tacit. In SOA design, architects are confronted with a broad decision tree. The many
conceptual, technology, and vendor asset level alternatives vary in their pros and
cons with respect to decision drivers such as functional requirements, cost, and qual-
ity attributes. There are numerous dependencies between the decisions, which lead
to combinations that work and others that do not work. Many tradeoffs must be
made, which often requires investigating clusters of related decisions. Moreover,
priorities and assessments vary by role, e.g., application architect, integration ar-
chitect, and infrastructure architect. It is hard to make generic recommendations; a
prototype project or studies are often required to resolve a particular design issue.
Reference architectures such as SOAI RA can assist practitioners when they tackle
complex design issues.

According to our experience, providing a knowledge repository is not sufficient
to make a codification strategy for knowledge management successful, no matter
how good such tools and their content may be. The available knowledge has to
appear in the tools and practices used by practitioners in their daily work. Any
lookup step, even if supported by powerful search and filter technologies and noti-
fication and recommendation features, means additional efforts which practitioners
are often not willing or not able to invest. Further tooling innovations are required
to overcome this inhibitor for a successful use of architectural knowledge.

We envision several advanced usage scenarios for the concepts presented in this
chapter. Project managers can use architectural decision models for planning pur-
poses. Work breakdown structures and effort estimation reports can be created, as
open decisions correspond to required activities. Health checking is another applica-
tion area: If there are many, frequent changes or many questions are still unresolved
in late project phases, the project is likely to be troubled. Product selection deci-
sions define which software licenses are required, and on which hardware nodes
the required software has to be installed. Moreover, the outcome of product-specific
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asset configuration decisions can serve as input to software configuration manage-
ment. The decision model can also serve enterprise architects; they can maintain a
company-specific instance of the decision model, consisting of a subset of issues and
alternatives accompanied by company-specific recommendations. Such an approach
authorizes solution architects on projects to make decisions (“freedom of choice”)
without sacrificing architectural integrity (“freedom from choice”).
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Chapter 13
Successful Architectural Knowledge Sharing:
Beware of Emotions

Eltjo R. Poort, Agung Pramono, Michiel Perdeck, Viktor Clerc,
and Hans van Vliet

Abstract This chapter presents the analysis and key findings of a survey on archi-
tectural knowledge sharing. The responses of 97 architects working in the Dutch
IT Industry were analyzed by correlating practices and challenges with project size
and success. Impact mechanisms between project size, project success, and architec-
tural knowledge sharing practices and challenges were deduced based on reasoning,
experience and literature. We find that architects run into numerous and diverse
challenges sharing architectural knowledge, but that the only challenges that have
a significant impact are the emotional challenges related to interpersonal relation-
ships. Thus, architects should be careful when dealing with emotions in knowledge
sharing.

13.1 Introduction

In recent years, Architectural Knowledge (AK), including architecture design de-
cisions, has become a topic of considerable research interest. Management and
sharing of AK are considered to be important practices in good architecting [192,
325, 295]. There has not been, however, much published research into the usage of
AK related practices in industry.

In the beginning of 2008, the members of the architecture community of practice
in a major Dutch IT services company1 were surveyed. The main reason for this
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survey was to establish a baseline of current practice in AK sharing, and to gain
insight into the mechanisms around architectural knowledge sharing and related
challenges in projects. In terms of the architectural knowledge views discussed in
Chap. 2, the questions originated from a decision centric mindset. The architects
were asked about the content, manner, reasons and timing of the AK sharing they
did in their latest project. They were also asked about the challenges they faced.
Furthermore, they were asked to identify various properties of their latest project’s
context, such as project size and success factors.

Even though the architects surveyed all work for the same IT services company,
according to the survey 64% of them is doing so mostly at customers’ sites. As a
consequence, the survey results represent a mix of AK sharing practices in ABC and
in ABC’s customer base, which includes major Dutch companies and government
institutions.

13.2 Survey Description

The invitation to participate in the survey was sent out by e-mail to 360 members
of the Netherlands (NL) Architecture Community of Practice (ACoP) of the ABC
company. The ACoP consists of experienced professionals practicing architecture
at various levels (business, enterprise, IT, software, and systems architecture) in
project or consultancy assignments. The survey was closed after 3 weeks. By that
time, 142 responses were collected; 97 respondents had answered the majority of
the questions (93 had answered all). The other 45 responses were discarded because
no questions about AK sharing had been answered. The survey consisted of 37
questions: 20 directly related to AK sharing, and 17 related to the context in which
the AK sharing took place.

13.3 Analysis

The analysis of the 97 valid survey responses was performed in three phases: first,
the current state of AK practice and challenges was established by comparing the
respondents’ answers to the 20 AK related questions. The analysis of four of these
questions is presented in Sect. 13.3.1: three questions about AK practices and one
about challenges in AK sharing. In phase one, we examined the responses by
ordering and grouping them.

Second, the relationship between the AK practices and challenges and their con-
text was analyzed by determining significant correlations between the AK-related
responses and some of the 17 context-related questions. The two context factors of
project success and project size are analyzed systematically in Sect. 13.3.2. The re-
sult of phase two is a set of statistically significant correlations between responses
to AK related questions, and the size and success of the projects they pertained to.
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In the third phase of the analysis, we reasoned and discussed about the results
from the first two phases. Two of the authors have been practicing architects in the
ABC company for more than a decade. Based on reasoning, literature and their expe-
rience we deduced causality and impact mechanisms from the correlations, leading
to an observed impact model that is presented in Sect. 13.3.3. Further discussions
are presented in Sect. 13.4.

13.3.1 State of AK Sharing Practice

In this section, the responses to four of the AK related questions are analyzed,
presenting the results of phase 1 of the analysis.

The four questions are:

• What type of architectural knowledge have you provided to or acquired from
ABC in your latest assignment?

• Why did you share architectural knowledge to your colleagues in ABC?
• When did you share architectural knowledge in your latest assignment?
• What challenges in architectural knowledge sharing did you experience in your

latest assignment?

Each question was provided with a set of predefined responses, determined in
consultation between two experienced architects and two researchers. There was
also the possibility for open text for missing answers. Respondents were asked to
signify the applicability of those responses on a five-point Likert scale. Table 13.1
lists the predefined responses to the questions, sorted by their average response val-
ues, which are listed in the third column. Each question is further analyzed in the
following subsections. The two rightmost columns in the table list the Spearman’s
rho correlations between the responses and the project context factors, which will
be analyzed in Sect. 13.3.2. We will start with the analysis of the responses without
taking into account their contexts.

Architectural Knowledge Types What type of architectural knowledge have you
provided to or acquired from ABC in your latest assignment?

The distribution of the response values is visualized in Fig. 13.1.2 With the ex-
ception of reference architectures and legal knowledge, all types of architectural
knowledge appear to be shared more or less equally. The least shared type of AK is
legal knowledge: over 75% indicate they do not or hardly share it with ABC.

AK Sharing Motivation Why did you share architectural knowledge to your col-
leagues in ABC? The distribution of the response values is visualized in Fig. 13.2.
These data tell us that most architects are either impartial to or agree with almost all
motivation responses.

2 The figures in this chapter use the codified response IDs of the ID column in Table 13.1.
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Table 13.1 AK related responses, average values and correlations

Architectural knowledge types ID avg prj succ rho prj size rho

Standards; principles and guidelines s akt std 2.95 −0.062 0.012
Tools and methods s akt tlsmeth 2.80 −0.096 .234∗
Known and proven practices s akt prctc 2.71 0.135 −0.017
Product and vendor knowledge s akt prodkn 2.71 0.187 −.244∗
Requirements s akt req 2.71 0.178 −0.113
Design Decisions including alternatives; assumptions; rationale s akt dd 2.69 0.1 −0.025
Business knowledge s akt buskn 2.61 0.082 −0.023
Patterns and tactics s akt ptrn 2.46 0.044 0.011
Reference architectures s akt ra 2.28 0.074 −0.014
Legal knowledge s akt legal 1.79 0.097 0.03

AK Sharing Motivation ID avg prj succ rho prj size rho

To build up my professional network s akw bldnetw 3.89 −0.116 −0.009
I just like to share my knowledge s akw like 3.84 0.115 −0.107
Personal relation with colleague(s) s akw persrel 3.81 −.230∗ 0.037
We all work for the same company s akw samecomp 3.77 0.109 −0.147
To enhance my professional reputation s akw reput 3.59 0.042 0.022
To contribute to the company’s business goals s akw compbusgls 3.53 0.054 −0.014
I hope the favour will be returned some day s akw return 3.39 −.204∗ 0.147
I will be recognised as a contributor s akw recog 3.32 0.018 −0.107
I have received useful information from him/her s akw reciproc 3.32 −.223∗ −0.019
My management expects me to s akw mgtexpect 3.09 .275∗∗ −0.091
This may work in my favour at my next salary review s akw salary 2.69 0.002 0.037

AK Sharing Timing ID avg prj succ rho prj size rho

Whenever needed to solve problems s akh problems 3.48 0.153 −0.035
At the end of the project s akh prjend 3.41 0.027 0.002
When colleagues ask me to do so s akh collask 3.39 0.048 −0.066
When management ask me to do so s akh mgtask 2.59 0.177 −0.052
Whenever I have time s akh freetime 2.57 −0.025 0.065
In the evening s akh evening 2.53 0.012 −0.008
Continuously during the project s akh prjcnt 2.34 .205∗ −0.133

AK Sharing Challenges ID avg prj succ rho prj size rho

Difficulty to achieve common understanding of requirements s chl requnders 3.82 −0.146 0.055
Difficulty to achieve appropriate participation from relevant

stakeholders s chl stkhpart 3.66 −0.165 0.017
Diversity in customer culture and business s chl custdiv 3.61 −0.102 0.051
Poor quality of information s chl infqual 3.42 −0.11 0.071
Lack of information s chl inflack 3.31 −0.086 0.12
Inconsistency in information obtained from different sources s chl infincons 3.26 −0.114 0.088
Lack of time s chl time 3.25 0.06 −0.017
Delays in delivery s chl delays 3.24 −0.167 0.194
Difficulty of obtaining the appropriate skills within the project s chl skills 3.24 −0.115 0.11
Conflicts and differences of opinion s chl conflict 3.19 −.214∗ 0.156
Difficulty to organise effective meetings s chl effmeet 3.09 −0.153 0.17
Lack of informal communication s chl lackinformal 3.01 −0.204 .226∗
Inaccessibility of technical facilities s chl tinacc 2.99 −0.183 .272∗∗
Growing and shrinking of project population s chl growshrink 2.82 −0.117 .317∗∗
Lack of trust between the project locations s chl sitetrust 2.77 −.272∗∗ .244∗
Project personnel turnover s chl persto 2.67 −0.116 .270∗∗
No appreciation from (project or competence) management s chl mgtappr 2.60 −0.125 .241∗
No willingness to share knowledge s chl nowill 2.39 −.224∗ .245∗
*Correlation is significant at the 0.05 level (two-tailed).
*Correlation is significant at the 0.01 level (two-tailed).
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Fig. 13.2 AK Sharing motivation

The only motivation that more architects disagree with (38%) than agree with
(17%) is salary. A related finding is the unpopularity of management expectation as
a motivator: 65% of respondents are at most impartial to this motivator.

AK Sharing Timing When did you share architectural knowledge in your latest
assignment?

The distribution of the response values is visualized in Fig. 13.3. By far the most
popular times to share AK are when problems occur, at the end of projects and
when asked by colleagues (other than managers); these three timings are all used
often or very often by over 50% of the architects. Almost 30% of architects indicate
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Fig. 13.4 AK Sharing Challenges

they never share AK “when management asks me to do so”. We assume this is
because in those cases management does not ask – an assumption supported by the
observation that there is no lack of willingness to share (see Fig. 13.4). This fortifies
our previous observation about management expectation as a motivator.

AK Sharing Challenges What challenges in architectural knowledge sharing did
you experience in your latest assignment?

The distribution of the response values is visualized in Fig. 13.4. The order-
ing of the challenges by average response value in Table 13.1 allows an interesting
categorization of challenges with descending response values:
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s chl requnders, s chl stkhpart, s chl custdiv are all related to communication is-
sues on group level (as opposed to personal level); this is the category of
challenges that most architects consider relevant in their latest projects

s chl infqual, s chl inflack, s chl infincons are about issues with quality or ab-
sence of codified AK; this is the second most commonly relevant category of
challenges

s chl time, s chl delays are related to planning; this is the third most commonly
relevant category of challenges

other challenges all less commonly relevant than the three categories mentioned
above, are related to obtaining resources, interpersonal issues, teaming, continu-
ity and management

In discussions about challenges in knowledge sharing, “knowledge is power” [27]
is often cited as a reason for professionals not to want to share knowledge. In our
survey however, lack of willingness to share knowledge emerges as the least rel-
evant challenge, which the majority of architects find irrelevant, and which only
18% find relevant. The next least relevant challenge is lack of management appre-
ciation, which only 21% find relevant. The unpopularity of this response suggests
that, even though we have seen in Sect. 13.3.1 that both salary and management ex-
pectations are at the bottom of the list of reasons to share AK, architects are not
actively discouraged by their management’s apparent disinterest. Seeing that 65%
of respondents are at most impartial to management as a motivator (Fig. 13.2) and
almost 80% are at most impartial to management as a challenge (Fig. 13.4), one
might conclude that architects do not see management as an important factor in
Architectural Knowledge Sharing. As we will see later on, they might be wrong
about this.

13.3.2 AK Practices in Context

In this section, we analyze the relationship between the AK practices and challenges
and their project context, by examining significant correlations between the AK-
related responses and some of the context-related questions. The two context factors
analyzed here are project success and project size.

The first context factor analyzed is project success, as perceived by the architects.
Perceived project success3 is determined by asking the architects how they rated
seven aspects of project success on a five-point Likert scale from Poor to Excellent.
The aspects they rated are: Sticking to budget, Delivery in time, Client satisfaction,
Management support, Personnel turnover, Solution quality and Team satisfaction.
The combined answers of these seven aspects were subsequently averaged to obtain
a quantification of overall project success per case. Cronbach’s alpha test for internal
consistency [84] was used to verify that these seven responses measure the same
construct of success (alpha = 0.82).

3 We use the terms “project success” and “perceived project success” interchangeably, always
meaning the success as perceived by the architects and reported in the survey
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The second context factor analyzed is project size. Projects were assigned an
exponential size category between 1 and 5, based on the number of project mem-
bers: 10 or less became category 1, 11–30 category 2, 31–100 category 3, 101–300
category 4, and over 300 category 5.

Table 13.1 shows the Spearman’s rho correlations between project success and
the AK practice related responses in column prj succ rho. Correlations between
project size category and the AK practice related responses are in column prj size
rho.

Correlations with a positive or negative slope of over 0.2 and a significance level
of under .05 (indicated by one or two asterisks) are considered significant and dis-
cussed here. In the discussion of the correlations, some speculation is presented as
to the underlying mechanisms, based on the experience of the practicing architects
among the authors.

Cause and Effect. One of the objectives of this survey was to gain insight into mech-
anisms around architectural knowledge sharing in projects. In other words, we were
looking for ways in which Architectural Knowledge Sharing impacts projects and
vice versa – questions of cause and effect.

When analyzing correlations like the ones found in this survey, the question of
causality between the correlated measurements deserves careful consideration. The
mere presence of a correlation by itself does not imply a causal relationship. In order
to determine potential causality, we resorted to three additional means: reasoning,
literature and the experience of two of the authors as practicing architects in ABC.

The four categories of measurements we are correlating here are:

AKS Practices. The responses related to the type, motivation and timing of archi-
tectural knowledge sharing

AKS Challenges. The responses to the question: “What challenges in architec-
tural knowledge sharing did you experience in your latest assignment?”

Project Success. The perceived success of the respondents’ latest project
Project Size. The size of the respondents’ latest project (category based on num-

ber of project members)

There are six possible correlations between these four categories. We are not ana-
lyzing correlations between AKS Practices and Challenges. Figure 13.5 visualizes
potential causality arrows for the five remaining possible correlations. In this figure
and Fig. 13.8, a causality arrow from A to B symbolizes that A has impact on B,
implying that making changes to A would cause related changes in B. The arrows
are based on the following reasoning:

Project Size ↔ Project Success. Project size is well known to influence project
success in many ways, both in literature [54, 168] and experience, so the primary
arrow of causality is from Size to Success

Project Size ↔ AKS Practices. Experience indicates that mechanisms determin-
ing project size are only marginally impacted by architectural knowledge sharing;
on the other hand, project size determines factors like organizational and phys-
ical distance between project members, which are obvious factors in AKS. We
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Fig. 13.5 Causality as deduced from reasoning, literature and experience

conclude that any correlation found means that project size impacts AKS, and
not the other way around.

Project Size ↔ AKS Challenges. Like with AKS Practices, project size causes
AKS challenges. There are some challenges that may in time conversely influ-
ence project size: for example, difficulty to obtain the appropriate skills may
either lead to a smaller project because there is no staff available, or to a
larger project because the lower skill level is compensated by adding more staff.
We conclude that there is a primary causal arrow from project size to AKS
challenges, and a potential secondary reverse arrow.

Project Success ↔ AKS Practices. Examples of causality in both directions are
experienced: e.g., a more successful project may lead to a better atmosphere
causing more knowledge to be exchanged, or conversely more knowledge shar-
ing may contribute to a more successful project. We conclude that we cannot
a priori attach causality direction to correlations found between project success
and AKS practices.

Project Success ↔ AKS Challenges. The word challenge is used here as a syn-
onym for obstacle, which can be defined as something that makes achieving one’s
objectives more difficult. Since the objective here is a successful project, the pri-
mary arrow of causality is by definition from Challenge to Success. There is also
a possibility of reverse causality here: challenges may be exacerbated or caused
by (lack of) project success, e.g. the atmosphere in an unsuccessful project may
lead to lack of trust.

The causality arrows between the four categories of measurements as visual-
ized in Fig. 13.5 will be elaborated at the end of this section, based on correlations
measured.

Correlation with project success. We now discuss the correlations between archi-
tectural practices and challenges and project success. In column 4 of Table 13.1,
we find eight significant correlations. Summarizing, in more successful projects,
architects tend to:

• Be less motivated to share AK for interpersonal relationship reasons, but are more
motivated by their management’s expectations

• Face less challenges related to interpersonal relationships
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Fig. 13.6 Various AKS parameters plotted against project success

We find no correlation between project success and the type of the Architectural
Knowledge shared.

Motivation: s akw persrel, s akw return, s akw reciproc Remarkably, all motiva-
tion responses that are related to one-to-one relationships between colleagues
show a significant negative correlation with project success. Figure 13.6a visu-
alizes this relationship, showing a clearly downward slanting cluster: the x-axis
represents the individual architects’ average mark given to these three responses.4

There are many possible explanations, but in view of our findings about AK
sharing challenges a few items further down, the most plausible one appears to
be related to trust. Problems in projects tend to reduce trust, which might cause
architects to place more value on interpersonal motives.

Motivation: s akw mgtexpect Even though management expectations are consid-
ered one of the least important motivations for sharing AK by the architects, it
is the only motivation that has a positive correlation with project success. The
explanation may also be related to trust levels: architects working on successful

4 The lines in the scatter plots in this section represent linear regression fit lines and their 95%
confidence interval.
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projects have more confidence in their management, and hence are more inspired
or motivated by them.

Timing: s akh prjcnt The only AK sharing timing response that has a correla-
tion with project success is continuous AK sharing during the project. However,
visual inspection of Fig. 13.6b suggests that this is a spurious effect.

Challenges: s chl conflict, s chl sitetrust and s chl nowill Since there is by def-
inition a causality between AKS challenges and project success, we expect to
find correlations. Remarkably, only three challenges are significantly correlated
with project success. These three challenges, all with a very clear negative cor-
relation, have in common that they are related to interpersonal relationships and
emotion: conflicts, trust and willingness to share AK. We have plotted the corre-
lation between project success and the individual architects’ average mark given
to these three responses related to interpersonal challenges in Fig. 13.6c. As for
the other challenges, finding no correlation indicates one of two things: either the
challenge is so insignificant that the correlation is too small to be measured in a
sample this size, or the challenge is somehow neutralized.

From these correlations, we can draw the following conclusion: the only significant
AKS challenges that are not neutralized in projects are those related to emotion
and interpersonal relationships. In less successful projects, there is less trust and
willingness to share AK, and more conflict. This appears not to affect the type of
AK shared. It does, however, have a significant effect on architects’ motivation to
share architectural knowledge: in more successful projects, they are more motivated
by management and less by interpersonal relationships between colleagues.

Correlation with project size. We proceed to discuss the correlations between ar-
chitectural practices and challenges and project size, as documented in column 5 of
Table 13.1. We find nine significant correlations. Summarizing, in larger projects,
architects tend to:

• Face significantly more challenges of multiple kinds
• Share more knowledge about tools and methods, but less about products and

vendors

Project size has no effect on AK sharing motivation or timing.

s akt tlsmeth Architects in larger projects share slightly more information related
to tools and methods than architects in smaller projects. This is likely due to the
fact that there are simply more developers to educate on tools and methods.

s akt prodkn Architects in some smaller projects tend to share more knowledge
related to products and vendors. We suspect that this is due to the fact that in
larger projects, decisions about products and vendors are often made on a higher
(management) level, whereas smaller project architects are more likely to be in-
volved in these decisions, and hence have to share more knowledge related to
products and vendors.

AKS challenges Table 13.1 shows that out of the 18 types of challenges surveyed,
seven are significantly correlated to project size. We have also calculated the ag-
gregated AKS challenge level as the average of each architect’s challenge-related
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Fig. 13.7 AKS Challenges versus project size

responses. It turns out this aggregated AKS challenge level is correlated to project
size with a correlation coefficient of 0.356 at a 0.001 significance level. The seven
challenges at the bottom of Table 13.1 are the only ones that are also individually
correlated to project size. Apparently, some challenges are universal, and oth-
ers are considered less relevant in smaller projects, bringing down their average
response value. We have illustrated this by plotting the average response values
of both the seven least commonly relevant and the 11 most commonly relevant
challenges against project size in Fig. 13.7. The figure confirms that there is in-
deed a clear upward trend, and that it is steeper for the less commonly relevant
challenges.
Based on the fact that larger projects are likely to include more distinct depart-
ments or locations, and the well-known issue of tension between departments,
we would expect larger projects to suffer more from emotion-related challenges.
We do indeed find correlations between project size and lack of both willing-
ness (0.245) and trust (0.244), but no significant correlation with the challenge
of conflicts and differences of opinion.

13.3.3 Refined Model of Causality

We now use the correlations observed in Sect. 13.3.2 to obtain a more detailed
picture of causality. Figure 13.8 shows the causality arrows between the four cate-
gories of measurements as visualized in Fig. 13.5, but the AKS category boxes have
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Fig. 13.8 Causality as observed

been replaced with more specific subcategories corresponding to the responses that
showed correlations. Additional symbols show whether correlations are positive or
negative. Specifically, we have:

• Replaced the generic box AKS Challenges with a box Less common AKS Chal-
lenges, representing the seven least common AKS challenges that have significant
positive correlations with project size.

• Created a box Interpersonal challenges inside the Less common AKS Challenges
box, representing the three challenges related to willingness, trust and conflict
that are negatively correlated with project success.

• Replaced the generic AKS Practices box with four specific boxes representing the
practices that we have found to be correlated with either project size or project
success.

• Added + and − symbols to the causality arrows representing the sign of the
observed correlations.

There is one correlation that we had not discussed yet: that between project size
and perceived project success. Figure 13.6d displays a very clear relationship be-
tween project size and perceived project success. Perceived project success and the
logarithmic project size category described above show a negative Spearman’s rho
correlation coefficient of −0.449, with a significance of 0.000. This is in line with
results found by [168], and conversely provides some additional validation that our
input data behave according to known properties of IT projects. Brooks [54] gives a
clear explanation of one of the mechanisms that cause this correlation. Surprisingly,
a more recent survey [111] does not find this correlation.

Figure 13.8 summarizes in one picture the combined mechanisms in the interplay
between AKS and project size and success. We see how project size impacts some
challenges, and which challenges impact project success. We also see that project
size impacts the type of knowledge shared, and we observe a relationship between
AKS motivation and project success, a relationship with an as yet undetermined
arrow of causality.
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13.4 Discussion and Related Work

In this section, we further discuss the results found above and threats to validity, and
we relate them to additional related material found in literature.

13.4.1 Threats to Validity

These results are based on a survey of architects in one IT services company in one
country. This limitation is somewhat softened by the fact that 64% of respondents
work mostly at customers’ sites, but the results are certainly influenced by cultural
aspects of both the ABC company and the Netherlands location. It would be very
interesting to repeat the survey in other companies and locations.

The ordering of the responses in Table 13.1 and the response value distribution
bar charts is based on average response values. The meaning of the average number
itself is not clear, since the Likert-scale is not equidistant. An alternative order-
ing quantity would be the percentile responses of e.g. the two most positive Likert
values. This would have the advantage of being able to say exactly what the or-
dering quantity means, but the disadvantage of ignoring the information inherent
in the detailed distribution of responses. Visual inspection of the bar charts shows
that, with the exception of Fig. 13.1, the order of the responses would not be that
much different, specifically in those cases where we have based reasoning on the
response ordering. As an example: the “seven least commonly relevant challenges”
in Fig. 13.4 that we have discussed above would also be the seven bottom-most
challenges if ordered by percentile of respondents answering “Relevant” or “Very
Relevant”.

A final threat is caused by our approach of doing multiple statistical tests, and
deriving our model from significant statistical results found in those tests. This ap-
proach implies a risk of introducing spurious statistical results in the model. We
have mitigated this risk by using reasoning, experience and literature, but it would
be interesting to further validate the model by using it to predict results in other
surveys.

13.4.2 Project Success in Literature

Project success has long been an active research topic. Traditionally, project success
is defined in terms of meeting time, cost and quality objectives [251]. These corre-
spond to the first three of the seven project success criteria used in our survey. More
recently, it has been observed that projects can be successful in ways that cannot be
measured by these traditional criteria. Based on these insights, Baccarini et al. [25]
have constructed a conceptual framework for project success. Baccarini’s frame-
work distinguishes between Project Management Success, which includes the three
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traditional criteria of time, cost and process quality, and Product Success, which
adds criteria related to the product in a more strategic way, involving the product’s
goal and purpose and product satisfaction. In Baccarini’s framework, our criteria
would all fall in the Project Management Success category, with the exception of
Solution Quality. Team Satisfaction in Baccarini’s framework can relate to both
project and product; in our experience, this is especially true for architects, who
derive a large part of their job satisfaction from product quality. This observation
is confirmed by research by Linberg et al. [210] and more recently by Procaccino
et al. [257], who observe that developers’ perception of project success often devi-
ates significantly from the traditional criteria. Developers (including architects) tend
to judge success by criteria that extend beyond the project, sometimes even to the
extent that even canceled projects can be successful in their eyes.

13.4.3 Motivation and Emotion in Architectural Knowledge
Sharing

An interesting finding about motivation in this survey is the observed shift in motiva-
tion source from colleagues to management in more successful projects. Could there
be an either/or effect, in the sense that the 1-on-1 motivation by colleagues and mo-
tivation by management are somehow mutually exclusive? In that case, one would
expect a negative correlation between these two motivation sources, which we did
not measure (Spearman’s rho = 0.107 with a two-tailed significance of 0.295). We
conclude that the mechanisms causing these shifts are independent. The finding
does, however, cause one to wonder about architects’ apparent indifference to man-
agement expectations as either a motivator or a challenge. The well-known Chaos
Reports [305] already showed empirical evidence for management attention being a
key project success factor.

Markus already identified the importance of being aware of one’s motivation
long before the term architect was used in the context of system design: “Self-
examination of interests, motives, payoffs, and power bases will lend much to the
implementor’s ability to understand other people’s reactions to the systems the im-
plementor is designing. . . ” [219]. In literature, motivation is reported to have the
single largest impact on developer productivity[42, 221]. Moreover, in system de-
velopment, the architecture represents the system’s earliest design decisions with the
highest impact on success [34]. Combining these facts, it is only to be expected that
the motivation to share Architectural Knowledge is correlated with project success.
Our results not only point to the importance of motivation and its source, but also
shed some light on the mechanisms through which motivation and emotion impact
project success through Architecture Knowledge management.

Finally, some words on the topic of emotion, a term that we introduced in
Sect. 13.3.2 as the common element between the three only challenges that have
a significant negative correlation with project success: Conflicts and differences of
opinion, Lack of trust between the project locations and No willingness to share
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knowledge. During the analysis, we often wondered how it was possible that we
did not find any significant correlation between the other challenges in AKS and
Project Success. Consider, for example, the most commonly encountered challenge:
Difficulty to achieve common understanding of requirements. How can a project be
successful without common understanding of requirements? As stated above, the
only plausible explanation is that all of these other challenges are apparently neu-
tralized. With neutralize we mean that if these challenges occur, there are other
factors that prevent them from having a significant impact on project success. In the
case of our example, these could be compensating activities to promote the common
understanding of requirements, such as client meetings. In the end, the only chal-
lenges that are not neutralized are those related to lack of trust, willingness, conflicts
and differences of opinion: all issues in interpersonal relationships that have a strong
negative emotional connotation. Apparently, it is harder for architects to neutralize
challenges when such negative emotions are involved. This is a phenomenon that
the practicing architects among the authors have often observed in real life, and it
should be no surprise, given that architects are human beings. The significant finding
here is that these emotional challenges are not neutralized where all other challenges
are, and hence they merit extra attention, leading to the warning in our title: Beware
of Emotions

We conclude:
FOR ARCHITECTS, TO UNDERSTAND THEIR MOTIVATION AND DEAL WITH

EMOTIONS ARE CRUCIAL KNOWLEDGE SHARING SKILLS.

13.5 Summary

We set out on this survey with two goals, which were both achieved: to establish
the current state of architectural knowledge sharing in the ABC company and its
customers, and to gain insight into the mechanisms around architectural knowledge
sharing in projects. In order to gain this insight, we looked at architects’ responses to
four questions about AK sharing, and the correlations between these responses and
their latest projects’ success and size, and we reasoned about impact mechanisms
and causality.

The analysis revealed the following mechanisms:

• Architects face many challenges sharing architectural knowledge in projects
• These challenges are more numerous and diverse in larger projects than in smaller

ones.
• The most common of these challenges are related to group level communication

issues, the quality of codified knowledge and planning issues.
• However, these common challenges are not correlated with project success, so

apparently they are generally neutralized somehow.
• The only challenges that are correlated with project success are the ones related

to interpersonal relationships: conflicts, trust and willingness to share knowledge.
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• Architects’ motivation to share knowledge is more personal in less successful
projects.

• Architects do not see management as an important factor in Architectural Knowl-
edge Sharing, but those architects that are motivated by management tend to work
in more successful projects.

Our final conclusion is that dealing with emotions is a crucial factor in how ar-
chitectural knowledge sharing leads to successful projects. It is very important for
architects to understand their motivation, and they should be careful when dealing
with emotions when sharing knowledge.
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215. Lübke, D.: An Integrated Approach for Generation in Service-Oriented Architecture

Projects. Phd thesis, Leibniz Universität Hannover (2007)
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307. Stapel, K., Schneider, K., Lübke, D., Flohr, T.: Improving an industrial reference process
by information flow analysis: A Case Study. In: J. Münch, P. Abrhamsson (eds.) PROFES
2007, LNCS vol. 4589, pp. 147–159. Springer, (2007)

308. Stolze, M.: Visual critiquing in domain oriented design environments: Showing the right
thing at the right place. In: J.S. Gero, F. Sudweeks (eds.) Artificial Intelligence in Design’94,
pp. 467–482. Kluwer, Dordretch (1994)

309. Swan, J., Scarbrough, H., Preston, J.: Knowledge management – the next fad to forget
people? In: J. Pries-Heje, C. Ciborra, K. Kautz, J. Valor, E. Christiaanse, D. Avison, C. Heje
(eds.) 7th European Conference on Information Systems, vol. 2, pp. 668–678. Copenhagen,
Denmark (1999)

310. Tai, S.: Software Service Engineering. Presentation at Schloss Dagstuhl seminar.
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=09021 (2009)

311. Taibi, T. (ed.): Design Pattern Formalization Techniques. IGI Publishing (2007)
312. Tanenbaum, A.S., van Steen, M.: Distributed systems: principles and paradigms, second

edn. Addison-Wesley, Reading MA (2007)
313. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali-Babar, M.: A comparative study of

architecture knowledge management tools. J. Syst. Software (in press)
314. Tang, A., Babar, A.M., Gorton, I., Han, J.: A Survey of the Use and Documentation of

Architecture Design Rationale. In: Proceedings 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA5), pp. 89–98. IEEE Computer Society (2005)

315. Tang, A., Han, J.: Architecture Rationalization: A Methodology for Architecture Verifi-
ability, Traceability and Completeness. In: Proceedings 12th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (ECBS ’05),
pp. 135–144. IEEE, USA (2005)

316. Tang, A., Jin, Y., Han, J.: A Rationale-Based Architecture Model for Design Traceability
and Reasoning. J. Syst. Software 80(6), 918–934 (2007)

317. Tang, A., Nicholson, A., Jin, Y., Han, J.: Using Bayesian belief networks for change impact
analysis in architecture design. J. Syst. Software 80(1), 127–148 (2007)

318. Tang, A., Tran, M.H., Han, J., van Vliet, H.: Design reasoning improves software design
quality. In: S. Becker, F. Plasil, R. Reussner (eds.) 4th International Conference on the Quality
of Software-Architectures (QoSA), LNCS, vol. 5281, pp. 28–42. Springer, Berlin (2008)

319. Telang, R., Mukhopadhyay, T.: Drivers of Web portal use. Electron. Commerce Res. Applic.
4, 49–65 (2005)

320. Terveen, L.G., Selfridge, P.G., Long, M.D.: Living design memory: framework,
implementation, lessons learned. Hum.-Comput. Interact. 10(1), 1–37 (1995)

321. Thomas, D.M., Bostrom, R.P., Gouge, M.: Making knowledge work in virtual teams.
Commun. ACM 50(11), 85–90 (2007)

322. Tiwana, A.: The Knowledge Management Toolkit: Orchestrating IT, Strategy, and
Knowledge Platforms. Prentice-Hall, Englewood Cliffs, NJ (2002)

323. Toulmin, S.: The Uses of Argument, 2 edn. Cambridge University Press (2003)
324. Traetteberg, H., Molina, P.J., Nunes, N.J.: Making model-based UI design practical: usable

and open methods and tools. In: N. Nunes, C. Rich (eds.) 9th International Conference on
Intelligent User Interface, pp. 376–377. ACM, Funchal, Madeira, Portugal (2004)

325. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Software
22(2), 19–27 (2005)



www.manaraa.com

References 275

326. van der Ven, J., Jansen, A., Avgeriou, P., Hammer, D.: Using architectural decisions. In:
Proceedings of the 2nd International Conference on the Quality of Software-Architectures
(QoSA), LNCS, vol. 4214, pp. 1–10. Springer, Berlin (2006)

327. Vincenti, W.: What Engineers Know and How They Know It. John Hopkins University Press
(1990)

328. van Vliet, H.: Software architecture knowledge management. In: Proceedings 19th Australian
Software Engineering Conference (ASEC 2008), pp. 24–31. IEEE Computer Society (2008)

329. W3C: Semantic Web (2009). URL www.w3.org/2001/sw
330. W3C: Web Ontology Language (OWL) (2009). URL www.w3.org/2004/OWL
331. Wahler, M.: Using Patterns to develop consistent design constraints. PhD thesis, Swiss

Federal Institute of Technology Zurich (2008)
332. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing. Tech. Rep.

SMLI TR-94-29, Sun Microsystems (1994)
333. Wang, X., Zhang, D., Gu, T., Pung, H.: Ontology based context modeling and reasoning

using OWL. In: Proceedings of the 2nd IEEE Annual Conference on Pervasive Computing
and Communications Workshops (PerCom), pp. 18–22. IEEE Computer Society (2004)

334. Weaver, B.N., Bishop, W.L.: The Corporate Memory : a profitable and practical approach to
information management and retention systems. John Wiley, New York (1974)

335. Wenger, E.: Communities of practice : learning, meaning and identity. Cambridge University
Press, Cambridge, UK (1998)

336. Wenger, E.C., McDermott, R., Snyder, W.M.: Cultivating Communities of Practice. Harvard
Business School Press, Boston (2002)

337. White, S.A.: Business Process Modeling Notation Specification. Tech. rep., Object
Management Group Standard (2006)

338. Williams, L.G., Smith, C.U.: PASA: An architectural approach to fixing software per-
formance problems. In: Proceedings of the International Conference of the Computer
Measurement Group. Reno, USA (2002)

339. Winkler, S.: Information flow between requirement artifacts. In: P. Sawyer, B. Paech, P. Hey-
mans (eds.) International Working Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ 2007), LNCS, vol. 4542, pp. 232–246. Springer, Trondheim,
Norway (2007)

340. Yakovlev, I.V.: Web 2.0: Is it evolutionary or revolutionary? IT Profession. 9(6), 43–45
(2007)

341. Ye, Y., Fischer, G.: Context-Aware Browsing of Large Component Repositories. In: 16th
International Conference on Automated Software Engineering, pp. 99–106. Coronado
Island, CA, USA (2001)

342. Youngs, R., Redmond-Pyle, D., Spaas, P., Kahan, E.: A standard for architecture description.
IBM Syst. J. 38(1), 32–50 (1999)

343. Zhuge, H.: The Knowledge Grid. World Scientific, Singapore (2004)
344. Zimmermann, O.: An Architectural Decision Modeling Framework for Service-Oriented

Architecture Design. PhD Dissertation, Universität Stuttgart, Germany. Dissertation.de -
Verlag im Internet (2009)

345. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-Oriented Architecture
and Business Process Choreography in an Order Management Scenario. In: OOPSLA
Conference Companion. San Diego, CA, USA (2005)

346. Zimmermann, O., Gschwind, T., Kuester, J., Leymann, F., Schuster, N.: Reusable
Architectural Decision Models for Enterprise Application Development. In: S. Over-
hage, C. Szyperski (eds.) Proceedings 3rd International Conference on the Quality of
Software-Architectures (QoSA), LNCS, vol. 4880 pp. 15–32. Springer, Berlin (2007)

347. Zimmermann O., Koehler J., Leymann F., Polley R., Schuster N.: Managing Architectural
Decision Models with Dependency Relations, Integrity Constraints, and Production Rules.
J. Syst. Software (2009), doi:10.1016/j.jss.2009.01.039

348. Zimmermann, O., Milinski, M., Craes, M., Oellermann, F.: Second Generation Web
services-oriented architecture in production in the finance industry. In: OOPSLA Conference
Companion (2004)

www.w3.org/2001/sw
www.w3.org/2004/OWL


www.manaraa.com

Index

4 + 1 view, 43, 226

abstraction, 27
ADDSS, 98
ADkwik, 97, 227, 230
ALMA, 71
anticrises, 50
APTIA, 73
architectural design, 43
architectural knowledge, 10, 42, 234, 243

acquisition, 84
application-generic, 25
application-specific, 25
categories of, 26
compliance, 149
core model, 138, 153
decision-centric view, 24, 31, 223
definition of, 70, 176
development, 84
discovery, 147
distribution, 85
dynamism-centric view, 23, 29
emotion in sharing, 257
goals, 83
harvesting, 234
identification, 84
management philosophies, 27
measurement, 83
meta-model, 77
model, 81
motivation in sharing, 257
organization, 77
pattern-centric view, 22, 28, 200, 202, 223
preservation, 85
requirements-centric view, 23, 30, 176, 177
sharing, 123, 130, 144, 245
traceability, 151

use, 85
views on, 22

Architecturally Significant Requirements
(ASR), 75, 79

Architecture Business Cycle (ABC), 3
architecture description, 81
Architecture Description Language (ADL), 23,

33, 44
architecture knowledge management

aspects, 116
Archium, 99
AREL, 101, 157
ATAM, 71, 73
Attribute Driven Design (ADD), 5, 71, 75

backlog, 5
BAPO, 71
business grid, 121

Cloud Computing, 125
codification, 11, 60, 82, 96, 116, 125, 190, 223

design decision, 33
communities of practice, 13, 66, 122, 126, 183,

223, 243
corporate brain, 11
corporate memory, 11
COSMOD-RE, 34

decision
executive, 229

decision view, 53
decision viewpoint, 226
design decision, 3, 6, 42, 46, 70, 80, 141, 160,

176, 219
executive, 50
existence, 49
nonexistence, 50

277



www.manaraa.com

278 Index

design decision (cont.)
property, 50
taxonomy, 49
visualization of, 51

design rationale, 70, 80, 157, 161, 176
design reasoning, 70, 156, 162
diacrises, 50
double-loop learning, 13

EAGLE, 85, 104, 146
enterprise grid, 121
executive decision, 50, 229
existence decision, 49
experience exploitation, 176, 187
Experience Factory, 15
Experience Forum, 186, 187, 191
explicit knowledge, 10, 25, 60, 116

FLOSS, 199
FLOW diagram, 182
FLOW syntax, 181
fluid representation, 180
framework, 45

grid, 121
architecture knowledge management

aspects, 126
GRIFFIN, 104, 124, 137

grid, 124, 153

hosting grid, 122

IEEE 1471, 9, 45, 76, 139, 159
information flow, 177

change management, 183
Experience Forum, 186
feedback, 181, 182, 188
pattern, 185
requirements, 182

information flow modeling, 176, 177
information well, 148
ISO/IEC 42010, 45

knowledge
definition, 10
explicit, 10, 25, 60, 116
need, 74
tacit, 10, 25, 59, 116

Knowledge Architect, 102
knowledge base, 61
knowledge community, 127

collaboration, 127
knowledge directory, 63
knowledge grid, 122

knowledge management, 11, 176
behavioural school, 12, 66, 214
cartographic school, 63
codification strategy, 11, 60, 82, 96, 116,

125, 190, 223
critique, 12
definition, 2, 71
economic school, 12
engineering school, 64
hybrid strategy, 12, 82, 104, 116, 145, 223
in FLOSS, 202
in software engineering, 14
organisational school, 66, 116, 214
personalisation strategy, 11, 60, 116, 125,

223
problems, 73
schools, 12, 60, 116
spatial school, 67
strategies, 11
systems school, 61
tasks, 82
technocratic school, 12, 60, 116
tool support, 91
use cases, 74, 93, 141

knowledge repository, 61

Latent Semantic Analysis (LSA), 147
learning

double loop, 65
learning model, 189
learning organisation, 11, 13–15
learning software organisation, 14

maturement, 27
metaphor, 55
model theory, 178

networking platform, 114
nonexistence decision, 50

office space
design, 67

ontocrises, 49
ontology, 108, 124
Open Source, 199
organisation

double-knit, 66
organisational learning, 11
organisational memory, 11, 214

PAKME, 85, 106
PAS, 73
pattern, 45, 80

language, 33



www.manaraa.com

Index 279

peer-to-peer (P2P) network, 116
architecture knowledge management

aspects, 118
structured, 117
unstructured, 117

pericrises, 50
personalisation, 11, 60, 116, 119, 125, 223
process

architecting, 41
software architecture, 71

property decision, 50

Quality Attribute Workshop (QAW), 75
Quality Improvement Paradigm, 189

RADM, 227
rationale management system, 32
reference architecture, 221
refinement, 27
representation

architectural, 40

scenario, 80
SECI model, 13
SEI-ADWiki, 96
Semantic Web, 123

architecture knowledge management
aspects, 126

semantic wiki, 129
Service Oriented Architecture (SOA), 175,

192, 217
Infrastructure Reference Architecture, 224
infrastructure services, 219

SEURAT, 103
Siemens’ 4 Views (S4V), 71
skills management system, 63
SOA Decision Modeling (SOAD), 225
SOA layers, 229
SOA-Me platform, 194
social community, 127
social network, 113, 127

codification strategy, 127
collaboration, 127
personalization strategy, 127
virtual, 115

software architecture, 2, 40, 80
and life cycle, 4
and requirements engineering, 148

definition of, 3
design, 4, 41, 71
design method, 221
documentation, 40, 81
evaluation, 81
forces, 2
process, 6, 69, 162
rationale, 6, 42, 55, 157

software life cycle, 4
software product audit, 147
standards, 45
structured P2P network, 117

codification strategy, 117

tacit knowledge, 10, 25, 59, 116
technologies

blogs, 107
plug-ins, 110
Web 2.0, 110, 128
Web portals, 107
wikis, 107, 129

tools
challenges, 111
codification strategy, 96
hybrid strategy, 104

unstructured P2P network, 117
codification strategy, 119
hybrid strategy, 120
personalisation strategy, 119

use cases
consuming AK, 95
intelligent support, 96
managing AK, 95
producing AK, 95

utilization, 27

view, 9, 41, 43, 81
viewpoint, 9, 43, 226
Virtual Enterprise Organization (VEO), 122
virtual social network, 115
visualization, 51

Web 2.0, 128, 223
wiki, 129, 223, 239

yellow pages, 63


	Software Architecture Knowledge Management
	Foreword
	Preface
	Contents
	Contributors
	Chapter 1 Introduction to Software Architecture and Knowledge Management
	1.1 Introduction
	1.2 Software Architecture
	1.2.1 Software Architecture and the Software Life Cycle
	1.2.2 Architecture Design
	1.2.2.1 Architecture as a Set of Design Decisions

	1.2.3 Architectural Views
	1.2.4 Architectural Knowledge

	1.3 Knowledge Management
	1.3.1 Knowledge and Knowledge Management
	1.3.2 Knowledge and Learning
	1.3.3 Knowledge Management in Software Engineering

	1.4 Summary


	Part I Architecture Knowledge Management
	Chapter 2 Knowledge Management in Software Architecture: State of the Art
	2.1 Introduction
	2.2 What Is `Architectural Knowledge'?
	2.2.1 Different Views on Architectural Knowledge
	2.2.1.1 Pattern-Centric View
	2.2.1.2 Dynamism-Centric View
	2.2.1.3 Requirements-Centric View
	2.2.1.4 Decision-Centric View

	2.2.2 So, What Is Architectural Knowledge?

	2.3 Philosophies of Architecture Knowledge Management
	2.4 State-of-the-Art in Architecture Knowledge Management
	2.4.1 Sharing Architectural Knowledge
	2.4.2 Aligning Architecting with Requirements Engineering
	2.4.3 Intelligent Support for Architecting
	2.4.4 Towards a Body of Architectural Knowledge

	2.5 Justification
	2.6 Summary

	Chapter 3 Documentation of Software Architecture from a Knowledge Management Perspective – Design Representation
	3.1 Introduction
	3.2 Evolution of Architectural Representation
	3.2.1 Boxes and Arrows
	3.2.2 Views
	3.2.3 The Architecting Process
	3.2.4 Architectural Design Decisions
	3.2.5 Architectural Knowledge = Architectural Design + Architectural Design Decisions

	3.3 Architectural Design
	3.3.1 Viewpoints and Views
	3.3.2 Architecture Description Languages
	3.3.3 Application-Generic Knowledge: Patterns, Standards, Frameworks

	3.4 Architectural Design Decisions
	3.4.1 What Is an Architectural Design Decision?
	3.4.2 A Taxonomy of Architectural Design Decisions
	3.4.2.1 Existence Decisions (``ontocrises'')
	3.4.2.2 Bans or Nonexistence Decisions (``Anticrises'')
	3.4.2.3 Property Decisions (``Diacrises'')
	3.4.2.4 Executive Decisions (``Pericrises'')

	3.4.3 Visualization of Set of Design Decisions
	3.4.4 A ``Decisions View'' of Architecture

	3.5 Rationale, or, the Missing Glue
	3.6 Metaphors
	3.7 Summary

	Chapter 4 Strategies and Approaches for Managing ArchitecturalKnowledge
	4.1 Introduction
	4.2 Technocratic Approaches to Knowledge Management
	4.2.1 Systems
	4.2.2 The Cartographic School
	4.2.3 The Engineering School

	4.3 Behavioural Approaches to Knowledge Management
	4.3.1 The Organisational School
	4.3.2 The Spatial School

	4.4 Summary

	Chapter 5 Supporting the Software Architecture Process with Knowledge Management
	5.1 Introduction
	5.2 Software Architecture Process
	5.3 Knowledge Management Problems
	5.4 Knowledge Needed
	5.5 Architectural Knowledge Organization
	5.6 A Model of Architecture Knowledge Management
	5.7 Summary


	Part II Tools and Techniques for Managing Architectural Knowledge
	Chapter 6 Tools and Technologies for Architecture Knowledge Management
	6.1 Introduction
	6.2 Use Cases of AK Management
	6.2.1 Actors
	6.2.2 Use Cases

	6.3 Tool Support for Codification
	6.3.1 SEI-ADWiki
	6.3.2 ADkwik
	6.3.3 ADDSS
	6.3.4 Archium
	6.3.5 AREL
	6.3.6 Knowledge Architect
	6.3.7 SEURAT

	6.4 Tool Support for the Hybrid Strategy
	6.4.1 EAGLE
	6.4.2 PAKME

	6.5 Technologies
	6.5.1 Web Portal
	6.5.2 Blog and Wiki
	6.5.3 Voting and Ranking
	6.5.4 Natural Language Processing
	6.5.5 Ontologies
	6.5.6 Plug-in
	6.5.7 Version Management
	6.5.8 Web 2.0

	6.6 Summary

	Chapter 7 Establishing and Managing Knowledge Sharing Networks
	7.1 Introduction
	7.2 From Networking Platforms to Knowledge Communities
	7.2.1 Networking Platforms
	7.2.1.1 AKM Characteristics
	7.2.1.2 Peer-to-Peer Networks
	7.2.1.3 Grids
	7.2.1.4 Semantic Web

	7.2.2 Supported Knowledge Communities

	7.3 From Knowledge Communities to Social Networks
	7.3.1 Social Communities
	7.3.2 Support for Social Communities
	7.3.2.1 Web 2.0
	7.3.2.2 Wiki's


	7.4 Summary


	Part III Experience with Architecture Knowledge Management
	Chapter 8 The GRIFFIN Project: Lessons Learned
	8.1 Introduction
	8.2 The Beginning
	8.2.1 Core Model of Architectural Knowledge
	8.2.2 The Architect's Mindset

	8.3 Sharing Architectural Knowledge
	8.4 Discovering Architectural Knowledge
	8.5 Compliance with Architectural Knowledge in Distributed Settings
	8.6 Tracing Architectural Knowledge
	8.7 The GRIFFIN Grid
	8.8 Summary

	Chapter 9 Software Architecture Design Reasoning
	9.1 Introduction
	9.2 Software Architecture Design Reasoning
	9.3 Modeling Architecture Design Reasoning
	9.3.1 Design Concern
	9.3.2 Design Decision
	9.3.3 Design Outcome

	9.4 An Architectural Design Reasoning Process
	9.5 Applying AREL to an Industrial Case Study
	9.5.1 Analyze the Design by Reasoning
	9.5.2 Applying Design Reasoning in the Case Study
	9.5.3 Other Findings
	9.5.4 Benefits of Design Reasoning
	9.5.5 Limitations in the Case Study

	9.6 Summary

	Chapter 10 Modeling and Improving Information Flows in the Development of Large Business Applications
	10.1 Introduction
	10.2 Information Flow Modeling
	10.2.1 Information Flow: Concept, Focus and Purpose
	10.2.2 Key Concepts and Modeling Notation in FLOW

	10.3 Designing Feedback and Information Flows
	10.3.1 Designing Information Flows for Large Business Projects
	10.3.2 Conclusion: Desired FLOW and Architectural Elements

	10.4 Designing an Experience Forum
	10.4.1 Learning Cycles in General and in SoftwareArchitecture
	10.4.2 Mechanisms for Feedback and Experience

	10.5 Supporting Feedback and Experience in SOA Projects
	10.5.1 SOA: Aligning Software Services with Business Processes
	10.5.2 SOA as an Example for Large Business Application Projects
	10.5.3 Integrating Feedback into SOA Applications

	10.6 Summary

	Chapter 11 AKM in Open Source Communities
	11.1 Introduction
	11.2 FLOSS Projects in General
	11.3 Architecture Knowledge Management in FLOSS
	11.4 How does Architectural Knowledge Appear in FLOSS?
	11.4.1 ``Pure'' FLOSS Projects: Apache HTTP Server
	11.4.2 Hybrid OSS Projects: Apache Axis and Jini
	11.4.2.1 Apache Axis
	11.4.2.2 Jini Starter Kit

	11.4.3 Research Originated FLOSS Projects: The GlobusToolkit
	11.4.4 Architectural Knowledge Resources in FLOSS

	11.5 Future Trends and Expectations
	11.6 Summary

	Chapter 12 Architectural Knowledge in an SOA Infrastructure Reference Architecture
	12.1 Introduction: Middleware Services and SOA Infrastructure Design in IBM Global Technology Services
	12.1.1 Company Overview: IBM Global Technology Services
	12.1.2 From Labor-Based to Asset-Based Services: Service Products and Service Product Lines
	12.1.3 Middleware Service Product Line: SOA Infrastructure Services
	12.1.4 Supporting Assets: Methods and Reference Architectures
	12.1.5 Architecture Knowledge Management Strategy and Approach

	12.2 An SOA Infrastructure Reference Architecture
	12.2.1 Objectives and Artifact Overview
	12.2.2 Decision Viewpoint: SOA Decision Modeling
	12.2.3 Physical Viewpoint: Operational Model
	12.2.4 Summary of Approach and Benefits

	12.3 Harvesting SOA Decision Knowledge from Projects
	12.3.1 Sources of Architectural Decision Knowledge
	12.3.2 Architectural Knowledge Harvesting Process
	12.3.3 Guidance for the Four RIHA Process Steps

	12.4 Consuming SOA Decision Knowledge
	12.4.1 SOAD Usage during Creation of SOAI RA
	12.4.2 User Experience with SOAD and SOAI RA

	12.5 Summary

	Chapter 13 Successful Architectural Knowledge Sharing: Beware of Emotions
	13.1 Introduction
	13.2 Survey Description
	13.3 Analysis
	13.3.1 State of AK Sharing Practice
	13.3.2 AK Practices in Context
	13.3.3 Refined Model of Causality

	13.4 Discussion and Related Work
	13.4.1 Threats to Validity
	13.4.2 Project Success in Literature
	13.4.3 Motivation and Emotion in Architectural Knowledge Sharing

	13.5 Summary


	References
	Index




